login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Self-convolution of A257889.
2

%I #19 Nov 22 2019 13:18:48

%S 1,2,5,14,34,96,261,692,1680,4540,12540,34552,92728,251572,662340,

%T 1729628,4261528,11130160,29802200,80103640,218398544,595050400,

%U 1621285648,4411577744,11776668772,31899937136,85998657296,231056788736,607876418544,1615730650080,4228062351360,11047956392096,27736466241312,71915999814720,188591683462784,495344539985920,1321221455067520,3505058052234400

%N Self-convolution of A257889.

%H Paul D. Hanna, <a href="/A265226/b265226.txt">Table of n, a(n) for n = 0..2500</a>

%F Terms satisfy:

%F (1) a(n) = A257889(2*n) / A257889(n),

%F (2) a(n+1) = A257889(2*n+1) / A257889(n),

%F (3) a(n) = Sum_{k=0..n} A257889(n-k) * A257889(k),

%F for n>=0, where A(x) = G(x)^2 and G(x) = Sum_{n>=0} A257889(n)*x^n.

%e G.f.: A(x) = 1 + 2*x + 5*x^2 + 14*x^3 + 34*x^4 + 96*x^5 + 261*x^6 + 692*x^7 + 1680*x^8 + 4540*x^9 + 12540*x^10 + 34552*x^11 + 92728*x^12 +...

%e where

%e sqrt(A(x)) = 1 + x + 2*x^2 + 5*x^3 + 10*x^4 + 28*x^5 + 70*x^6 + 170*x^7 + 340*x^8 + 960*x^9 + 2688*x^10 + 7308*x^11 + 18270*x^12 +...+ A257889(n)*x^n +...

%e Illustration of initial terms:

%e a(1) = A257889(2)/A257889(1) = 2/1 = 2;

%e a(2) = A257889(3)/A257889(1) = 5/1 = 5;

%e a(2) = A257889(4)/A257889(2) = 10/2 = 5;

%e a(3) = A257889(5)/A257889(2) = 28/2 = 14;

%e a(3) = A257889(6)/A257889(3) = 70/5 = 14;

%e a(4) = A257889(7)/A257889(3) = 170/5 = 34;

%e a(4) = A257889(8)/A257889(4) = 340/10 = 34; ...

%o (PARI) {a(n) = my(A=1+x); for(k=2,n, A = A + a(k\2) * polcoeff(A^2, (k+1)\2) * x^k +x*O(x^n) ); polcoeff(A^2,n)}

%o for(n=0,40,print1(a(n),", "))

%o (PARI) {a(n) = my(A=[1,1]); for(k=2,n, A = concat(A, A[k\2+1]*Vec(Ser(A)^2)[(k+1)\2+1]) ); Vec(Ser(A)^2)[n+1]}

%o for(n=0,40,print1(a(n),", "))

%o (PARI) /* Generates N terms rather quickly: */

%o N=300; A=[1,1]; for(k=2,N, A = concat(A, A[k\2+1]*Vec(Ser(A)^2)[(k+1)\2+1]) ); Vec(Ser(A)^2)

%Y Cf. A257889.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Dec 15 2015