login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265225
Total number of ON (black) cells after n iterations of the "Rule 54" elementary cellular automaton starting with a single ON (black) cell.
6
1, 4, 6, 12, 15, 24, 28, 40, 45, 60, 66, 84, 91, 112, 120, 144, 153, 180, 190, 220, 231, 264, 276, 312, 325, 364, 378, 420, 435, 480, 496, 544, 561, 612, 630, 684, 703, 760, 780, 840, 861, 924, 946, 1012, 1035, 1104, 1128, 1200, 1225, 1300, 1326, 1404, 1431
OFFSET
0,2
COMMENTS
Take the first 2n positive integers and choose n of them such that their sum: a) is divisible by n, and b) is minimal. It seems their sum equals a(n). - Ivan N. Ianakiev, Feb 16 2019
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
LINKS
FORMULA
Conjectures from Colin Barker, Dec 08 2015 and Apr 20 2019: (Start)
a(n) = (n+1)*(2*n -(-1)^n +5)/4.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4.
G.f.: (1+3*x) / ((1-x)^3*(1+x)^2).
(End)
a(n) = n + 1 + (n+1) * floor((n+1)/2), conjectured. - Wesley Ivan Hurt, Dec 25 2016
a(n) = A093353(n) + n + 1, conjectured. - Matej Veselovac, Jan 21 2020
EXAMPLE
From Michael De Vlieger, Dec 14 2015: (Start)
First 12 rows, replacing "0" with "." for better visibility of ON cells, followed by the total number of 1's per row, and the running total up to that row:
1 = 1 -> 1
1 1 1 = 3 -> 4
1 . . . 1 = 2 -> 6
1 1 1 . 1 1 1 = 6 -> 12
1 . . . 1 . . . 1 = 3 -> 15
1 1 1 . 1 1 1 . 1 1 1 = 9 -> 24
1 . . . 1 . . . 1 . . . 1 = 4 -> 28
1 1 1 . 1 1 1 . 1 1 1 . 1 1 1 = 12 -> 40
1 . . . 1 . . . 1 . . . 1 . . . 1 = 5 -> 45
1 1 1 . 1 1 1 . 1 1 1 . 1 1 1 . 1 1 1 = 15 -> 60
1 . . . 1 . . . 1 . . . 1 . . . 1 . . . 1 = 6 -> 66
1 1 1 . 1 1 1 . 1 1 1 . 1 1 1 . 1 1 1 . 1 1 1 = 18 -> 84
1 . . . 1 . . . 1 . . . 1 . . . 1 . . . 1 . . . 1 = 7 -> 91
(End)
MAPLE
A265225:=n->1/4*(n+1)*(2*n-(-1)^n+5): seq(A265225(n), n=0..60); # Wesley Ivan Hurt, Dec 25 2016
MATHEMATICA
rule = 54; rows = 30; Table[Total[Take[Table[Total[Table[Take[CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}][[k]], {rows-k+1, rows+k-1}], {k, 1, rows}][[k]]], {k, 1, rows}], k]], {k, 1, rows}]
Accumulate[Total /@ CellularAutomaton[54, {{1}, 0}, 52]]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, Dec 05 2015
STATUS
approved