login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265222
Decimal expansion of the least real z > 1 that satisfies: 1/2 = Sum_{n>=1} {z^n} / 2^n, where {x} denotes the fractional part of x.
0
1, 3, 5, 5, 4, 9, 3, 0, 5, 1, 8, 4, 3, 4, 6, 3, 9, 6, 0, 4, 3, 0, 7, 9, 8, 2, 5, 4, 5, 1, 3, 6, 0, 1, 7, 2, 1, 5, 3, 6, 7, 9, 8, 6, 2, 6, 6, 2, 3, 0, 4, 0, 1, 7, 0, 5, 9, 7, 0, 3, 9, 9, 8, 2, 5, 1, 8, 3, 4, 6, 4, 5, 9, 5, 9, 6, 5, 6, 7, 9, 9, 1, 1, 7, 5, 2, 5, 8, 4, 1, 5, 8, 5, 9, 2, 4, 2, 4, 1, 6, 0, 2, 7, 8, 1, 0, 7, 7, 7, 2, 2, 0, 8, 1, 0, 3, 7, 6, 2, 7, 5, 5, 4, 0, 9, 0, 4, 7, 2, 4, 4, 6, 2, 6, 1, 8, 3, 7, 5, 9, 2, 7, 7, 3, 1, 9, 1, 7, 0, 5, 6, 5, 4, 5, 5, 0, 4, 3, 0, 5, 1, 1, 5, 5, 1, 5, 2, 5, 3, 2, 5, 3, 5, 7, 6, 4, 6, 8, 8, 4, 8, 0, 5, 5, 2, 7, 8, 2, 5, 8, 8, 2, 5, 4, 8, 5, 2, 4, 6, 8, 6, 8, 0, 7, 3, 6, 7, 0, 0, 2, 5, 8, 9, 1, 3, 7, 0
OFFSET
1,2
COMMENTS
Compare to the trivial sum: 1/2 = Sum_{n>=1} {z^n} / 2^n when z = 2/3.
Are there an infinite number of solutions to z such that 1/2 = Sum_{n>=1} {z^n}/2^n for z in the interval (1,2)? Can it be shown that these solutions are irrational?
FORMULA
Constant z satisfies: z/(2-z) = 1/2 + Sum_{n>=1} floor(z^n) / 2^n.
EXAMPLE
z = 1.35549305184346396043079825451360172153679862662304\
01705970399825183464595965679911752584158592424160\
27810777220810376275540904724462618375927731917056\
54550430511551525325357646884805527825882548524686\
80736700258913704221335857525909384098830553851116\
05126668310187108162998498933972248896649516339678\
49366846073141291529984290772350906229012817370186\
55169666380457011989017081864719838727980967224971\
98474075748848718792660615793372688507739995250655\
89552283138883099708481229931272775563504550828971\
70024113427009808993763831069451402518903559858745\
59505239672622181099687153202444348446965100196443\
80668334503687174824625643625205785168626890858603\
93558591010025659573835216359698255844450783545599\
17427663656403996437836675351715525954403386934996\
84666455482949770524207287282642519434321755773398\
62694330881627744201473062989839201202400657816150\
84391198373759362968161495215799374878373246239017\
13574353581079553116458694020174184103284836868862\
62896573800985278249325536552468829105057478796554...
GENERATING METHOD.
Set z = 1, then 5*N iterations of: z = z + 1/6 - 1/3*suminf(n=1, frac(z^n)/2^n ) yields about N digits.
RELATED CONSTANTS.
(1) Least real z > sqrt(2) such that 1/2 = Sum_{n>=1} {z^n}/2^n is
z = 1.53249422831624633589209045977055204808626394342423\
14743943812327455836621055716194661407233767648443884690...
(2) Least real z > 13^(1/6) such that 1/2 = Sum_{n>=1} {z^n}/2^n is
z = 1.53687788811637150697634883884345836398432123973966\
82723170954185424082387135095296328278152477537914182407...
(3) Least real z > 113^(1/11) such that 1/2 = Sum_{n>=1} {z^n}/2^n is
z = 1.53695074329851152802228619086712434244494261099208\
23135334501884406111892113321815249303292032820021290733...
(4) Least real z > 4^(1/3) such that 1/2 = Sum_{n>=1} {z^n}/2^n is
z = 1.59632077942330242620034231916724745224383614542308\
85710643389591659503459032792156507140054529416666027413...
(5) Least real z > sqrt(3) such that 1/2 = Sum_{n>=1} {z^n}/2^n is
z = 1.75118759092320930011149976687513099251284547995833\
95627867298408820204655832368182553275152837639807086641...
(6) Least real z > 73562^(1/20) such that 1/2 = Sum_{n>=1} {z^n}/2^n is
z = 1.75118762663466598663070625956863995162241902713017\
79945479735132207866837514950592202363248785148839017212...
(7) Least real z > 691806^(1/24) such that 1/2 = Sum_{n>=1} {z^n}/2^n is
z = 1.75118762870531088915040587334001786652479560768473\
66794998600900660167466413594621357623811851518779554331...
(8) Least real z > 13698^(1/17) such that 1/2 = Sum_{n>=1} {z^n}/2^n is
z = 1.75118802293006688271680253510886080565943343511207\
61212797559379720869345357325961787461767015435821839729...
(9) Least real z > 475^(1/11) such that 1/2 = Sum_{n>=1} {z^n}/2^n is
z = 1.75121702526493397702106373116694543383377610186430\
88066729332431554693339104712708810382658857189983724634...
(10) Least real z > 832^(1/12) such that 1/2 = Sum_{n>=1} {z^n}/2^n is
z = 1.75123699808590302107034621374375230412694312101003\
33815109181242003520899218074396156255274527703355463573...
It not known where the threshold values lie for all z in the interval (1,2).
PROG
(PARI) N=100 \\ Calculate and Print N digits of the constant
\p500 \\ set precision
{z=1.0; for(i=1, 5*N, z = z + 1/6 - 1/3*suminf(n=1, frac(z^n)/2^n ) ); z}
{a(n) = floor((10^n*z))%10}
{m=0; for(n=0, N, print1( floor((10^n*z))%10, ", "); if(m==50, m=0; print("")); m=m+1)}
CROSSREFS
Sequence in context: A329509 A119280 A307634 * A160585 A307447 A016658
KEYWORD
nonn,cons
AUTHOR
Paul D. Hanna, Dec 05 2015
STATUS
approved