OFFSET
1,2
COMMENTS
Compare to the trivial sum: 1/2 = Sum_{n>=1} {z^n} / 2^n when z = 2/3.
Are there an infinite number of solutions to z such that 1/2 = Sum_{n>=1} {z^n}/2^n for z in the interval (1,2)? Can it be shown that these solutions are irrational?
FORMULA
Constant z satisfies: z/(2-z) = 1/2 + Sum_{n>=1} floor(z^n) / 2^n.
EXAMPLE
z = 1.35549305184346396043079825451360172153679862662304\
01705970399825183464595965679911752584158592424160\
27810777220810376275540904724462618375927731917056\
54550430511551525325357646884805527825882548524686\
80736700258913704221335857525909384098830553851116\
05126668310187108162998498933972248896649516339678\
49366846073141291529984290772350906229012817370186\
55169666380457011989017081864719838727980967224971\
98474075748848718792660615793372688507739995250655\
89552283138883099708481229931272775563504550828971\
70024113427009808993763831069451402518903559858745\
59505239672622181099687153202444348446965100196443\
80668334503687174824625643625205785168626890858603\
93558591010025659573835216359698255844450783545599\
17427663656403996437836675351715525954403386934996\
84666455482949770524207287282642519434321755773398\
62694330881627744201473062989839201202400657816150\
84391198373759362968161495215799374878373246239017\
13574353581079553116458694020174184103284836868862\
62896573800985278249325536552468829105057478796554...
GENERATING METHOD.
Set z = 1, then 5*N iterations of: z = z + 1/6 - 1/3*suminf(n=1, frac(z^n)/2^n ) yields about N digits.
RELATED CONSTANTS.
(1) Least real z > sqrt(2) such that 1/2 = Sum_{n>=1} {z^n}/2^n is
z = 1.53249422831624633589209045977055204808626394342423\
14743943812327455836621055716194661407233767648443884690...
(2) Least real z > 13^(1/6) such that 1/2 = Sum_{n>=1} {z^n}/2^n is
z = 1.53687788811637150697634883884345836398432123973966\
82723170954185424082387135095296328278152477537914182407...
(3) Least real z > 113^(1/11) such that 1/2 = Sum_{n>=1} {z^n}/2^n is
z = 1.53695074329851152802228619086712434244494261099208\
23135334501884406111892113321815249303292032820021290733...
(4) Least real z > 4^(1/3) such that 1/2 = Sum_{n>=1} {z^n}/2^n is
z = 1.59632077942330242620034231916724745224383614542308\
85710643389591659503459032792156507140054529416666027413...
(5) Least real z > sqrt(3) such that 1/2 = Sum_{n>=1} {z^n}/2^n is
z = 1.75118759092320930011149976687513099251284547995833\
95627867298408820204655832368182553275152837639807086641...
(6) Least real z > 73562^(1/20) such that 1/2 = Sum_{n>=1} {z^n}/2^n is
z = 1.75118762663466598663070625956863995162241902713017\
79945479735132207866837514950592202363248785148839017212...
(7) Least real z > 691806^(1/24) such that 1/2 = Sum_{n>=1} {z^n}/2^n is
z = 1.75118762870531088915040587334001786652479560768473\
66794998600900660167466413594621357623811851518779554331...
(8) Least real z > 13698^(1/17) such that 1/2 = Sum_{n>=1} {z^n}/2^n is
z = 1.75118802293006688271680253510886080565943343511207\
61212797559379720869345357325961787461767015435821839729...
(9) Least real z > 475^(1/11) such that 1/2 = Sum_{n>=1} {z^n}/2^n is
z = 1.75121702526493397702106373116694543383377610186430\
88066729332431554693339104712708810382658857189983724634...
(10) Least real z > 832^(1/12) such that 1/2 = Sum_{n>=1} {z^n}/2^n is
z = 1.75123699808590302107034621374375230412694312101003\
33815109181242003520899218074396156255274527703355463573...
It not known where the threshold values lie for all z in the interval (1,2).
PROG
(PARI) N=100 \\ Calculate and Print N digits of the constant
\p500 \\ set precision
{z=1.0; for(i=1, 5*N, z = z + 1/6 - 1/3*suminf(n=1, frac(z^n)/2^n ) ); z}
{a(n) = floor((10^n*z))%10}
{m=0; for(n=0, N, print1( floor((10^n*z))%10, ", "); if(m==50, m=0; print("")); m=m+1)}
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Paul D. Hanna, Dec 05 2015
STATUS
approved