login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357835
a(n) = Sum_{k=0..floor((n-1)/3)} Stirling1(n,3*k+1).
2
0, 1, -1, 2, -5, 14, -35, -14, 1701, -26418, 351351, -4622982, 62705643, -890078826, 13297263525, -209438953542, 3477446002485, -60803484275898, 1117975706702127, -21580455768575886, 436591651807054107, -9241512424454751714, 204338436416329792941
OFFSET
0,4
LINKS
Eric Weisstein's World of Mathematics, Pochhammer Symbol.
FORMULA
Let w = exp(2*Pi*i/3) and set F(x) = (exp(x) + w^2*exp(w*x) + w*exp(w^2*x))/3 = x + x^4/4! + x^7/7! + ... . Then the e.g.f. for the sequence is F(log(1+x)).
a(n) = (-1)^n * ( (-1)_n + w^2 * (-w)_n + w * (-w^2)_n )/3, where (x)_n is the Pochhammer symbol.
PROG
(PARI) a(n) = sum(k=0, (n-1)\3, stirling(n, 3*k+1, 1));
(PARI) my(N=30, x='x+O('x^N)); concat(0, Vec(serlaplace(sum(k=0, N\3, log(1+x)^(3*k+1)/(3*k+1)!))))
(PARI) Pochhammer(x, n) = prod(k=0, n-1, x+k);
a(n) = my(w=(-1+sqrt(3)*I)/2); (-1)^n*round(Pochhammer(-1, n)+w^2*Pochhammer(-w, n)+w*Pochhammer(-w^2, n))/3;
CROSSREFS
Sequence in context: A344236 A374699 A265226 * A369591 A299164 A131408
KEYWORD
sign
AUTHOR
Seiichi Manyama, Oct 14 2022
STATUS
approved