login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131408
Repeated integer partitions or nested integer partitions.
7
1, 1, 2, 5, 14, 35, 95, 248, 668, 1781, 4799, 12890, 34766, 93647, 252635, 681272, 1838135, 4958738, 13379885, 36100214, 97409045, 262833314, 709207394, 1913652308, 5163654671, 13933178390, 37596275726, 101446960109, 273737216768, 738632652929, 1993073801930
OFFSET
0,3
COMMENTS
See A131407 for the labeled case (with much more explanation).
Also the number of sequences of distinct integer partitions (y_1, ..., y_k), containing no partitions of the form (111..1) other than (1), such that sum(y_1) = n and length(y_i) = sum(y_{i+1}) for all i = 1, ..., k-1. - Gus Wiseman, Jul 20 2018
LINKS
FORMULA
a(n) = A000041(n) + Sum_{i=2..n-1} A008284(n,i)*a(i).
a(n) ~ c * d^n, where d = A246828 = 2.69832910647421123126399866618837633..., c = 0.232635324064951140265176690908381464098550827908380222089145... . - Vaclav Kotesovec, Sep 04 2014
EXAMPLE
Let denote * an unlabeled element. Then a(n=3)=5 because we have [ *,*,* ], [ *, * ][ * ], [[ *,* ]][[ * ]], [[ *,* ][ * ]], [ * ][ * ][ * ].
From Gus Wiseman, Jul 20 2018: (Start)
The a(4) = 14 sequences of integer partitions:
(4), (31), (22), (211),
(4)(1), (31)(2), (22)(2), (211)(3), (211)(21),
(31)(2)(1), (22)(2)(1), (211)(3)(1), (211)(21)(2),
(211)(21)(2)(1).
(End)
MAPLE
A000041 := proc(n) combinat[numbpart](n) ; end: A008284 := proc(n, k) if k = 1 or k = n then 1; elif k > n then 0 ; else procname(n-1, k-1)+procname(n-k, k) ; fi ; end: A131408 := proc(n) option remember; local i ; if n <= 2 then n; else A000041(n)+add(A008284(n, i)*procname(i), i=2..n-1) ; fi ; end: for n from 1 to 40 do printf("%d, ", A131408(n)) ; od: # R. J. Mathar, Aug 07 2008
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
b(n, i-1) + b(n-i, min(n-i, i)))
end:
a:= proc(n) option remember; b(n$2)+
add(b(n-i, min(n-i, i))*a(i), i=2..n-1)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Sep 03 2020
MATHEMATICA
t[_, 1] = 1; t[n_, k_] /; 1 <= k <= n := t[n, k] = Sum[t[n-i, k-1], {i, 1, n-1}] - Sum[t[n-i, k], {i, 1, k-1}]; t[_, _] = 0; a[1]=1; a[2]=2; a[n_] := a[n] = PartitionsP[n] + Sum[t[n, i]*a[i], {i, 2, n-1}]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Feb 02 2017 *)
roo[n_]:=If[n==1, {{{1}}}, Join@@Cases[Most[IntegerPartitions[n]], y_:>Prepend[(Prepend[#, y]&/@roo[Length[y]]), {y}]]];
Table[Length[roo[n]], {n, 10}] (* Gus Wiseman, Jul 20 2018 *)
PROG
(Visual Basic) ' See Wieder link.
CROSSREFS
KEYWORD
nonn
AUTHOR
Thomas Wieder, Jul 09 2007
EXTENSIONS
Edited and extended by R. J. Mathar, Aug 07 2008
a(0)=1 prepended and edited by Alois P. Heinz, Sep 03 2020
STATUS
approved