login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080042
a(n) = 4*a(n-1)+3*a(n-2) for n>1, a(0)=2, a(1)=4.
5
2, 4, 22, 100, 466, 2164, 10054, 46708, 216994, 1008100, 4683382, 21757828, 101081458, 469599316, 2181641638, 10135364500, 47086382914, 218751625156, 1016265649366, 4721317472932, 21934066839826, 101900219778100
OFFSET
0,1
COMMENTS
This is the Lucas sequence V(4,-3). [Bruno Berselli, Jan 09 2013]
FORMULA
G.f.: (2-4*x)/(1-4*x-3*x^2).
a(n) = (2+sqrt(7))^n+(2-sqrt(7))^n.
G.f.: G(0)/x -2/x, where G(k)= 1 + 1/(1 - x*(7*k-4)/(x*(7*k+3) - 2/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 03 2013
a(n) = [x^n] ( (1 + 4*x + sqrt(1 + 8*x + 28*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015
MATHEMATICA
CoefficientList[Series[(2 - 4 t)/(1 - 4 t - 3 t^2), {t, 0, 25}], t]
PROG
(Sage) [lucas_number2(n, 4, -3) for n in range(0, 22)] # Zerinvary Lajos, May 14 2009
CROSSREFS
Cf. A015530: Lucas sequence U(4,-3).
Sequence in context: A071298 A152104 A047035 * A364643 A324145 A366732
KEYWORD
nonn,easy
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Jan 21 2003
STATUS
approved