OFFSET
0,1
COMMENTS
This is the Lucas sequence V(4,-3). [Bruno Berselli, Jan 09 2013]
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..300
Wikipedia, Lucas sequence: Specific names.
Index entries for linear recurrences with constant coefficients, signature (4, 3).
FORMULA
G.f.: (2-4*x)/(1-4*x-3*x^2).
a(n) = (2+sqrt(7))^n+(2-sqrt(7))^n.
G.f.: G(0)/x -2/x, where G(k)= 1 + 1/(1 - x*(7*k-4)/(x*(7*k+3) - 2/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 03 2013
a(n) = [x^n] ( (1 + 4*x + sqrt(1 + 8*x + 28*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015
MATHEMATICA
CoefficientList[Series[(2 - 4 t)/(1 - 4 t - 3 t^2), {t, 0, 25}], t]
PROG
(Sage) [lucas_number2(n, 4, -3) for n in range(0, 22)] # Zerinvary Lajos, May 14 2009
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Jan 21 2003
STATUS
approved