login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344261
Number of n-step walks from one of the vertices with degree 3 to itself on the four-vertex diamond graph.
2
1, 0, 3, 4, 15, 32, 91, 220, 583, 1464, 3795, 9652, 24831, 63440, 162763, 416524, 1067575, 2733672, 7003971, 17938660, 45954543, 117709184, 301527355, 772364092, 1978473511, 5067929880, 12981823923, 33253543444, 85180839135, 218195012912, 558918369451
OFFSET
0,3
COMMENTS
a(n) is the number of n-step walks from vertex A to itself on the graph below.
B--C
| /|
|/ |
A--D
FORMULA
a(n) = a(n-1) + 4*a(n-2) - (-1)^n for n > 1.
a(n) = 5*a(n-2) + 4*a(n-3) for n > 2.
a(n) = A344236(n-1) + 2*a(n-2) + 2*A344236(n-2) for n > 1.
a(n) = A344236(n) + (-1)^n.
a(n) = A006131(n) - A344236(n).
a(n) = (A006131(n) + (-1)^n)/2.
a(n) = ((sqrt(17)-1)/(4*sqrt(17)))*((1-sqrt(17))/2)^n + ((sqrt(17)+1)/(4*sqrt(17)))*((1+sqrt(17))/2)^n + (1/2)*(-1)^n.
G.f.: (2*x^2 - 1)/(4*x^3 + 5*x^2 - 1).
EXAMPLE
Let A, B, C and D be the vertices of the four-vertex diamond graph, where A and C are the vertices with degree 3. Then, a(3) = 4 walks from A to itself are: (A, B, C, A), (A, C, B, A), (A, C, D, A) and (A, D, C, A).
MAPLE
f := proc(n) option remember; if n = 0 then 1; elif n = 1 then 0; elif n = 2 then 3; else 5*f(n - 2) + 4*f(n - 3); end if; end proc
MATHEMATICA
LinearRecurrence[{0, 5, 4}, {1, 0, 3}, 30] (* Amiram Eldar, May 13 2021 *)
PROG
(Python)
def A344261_list(n):
list = [1, 0, 3] + [0] * (n - 3)
for i in range(3, n):
list[i] = 5 * list[i - 2] + 4 * list[i - 3]
return list
print(A344261_list(31)) # M. Eren Kesim, Jul 19 2021
CROSSREFS
Sequence in context: A293047 A135100 A205485 * A055486 A041665 A052133
KEYWORD
nonn,easy,walk
AUTHOR
M. Eren Kesim, May 13 2021
STATUS
approved