login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344264
When computing A229037, the value of the n-th term will add up to n-1 new constraints on the n-1 following terms; a(n) is the number of new constraints that the computation of A229037(n) brings.
2
0, 1, 2, 2, 2, 5, 5, 7, 7, 4, 4, 8, 3, 3, 9, 9, 16, 15, 9, 11, 12, 15, 15, 23, 12, 14, 23, 8, 7, 16, 6, 6, 15, 14, 26, 21, 5, 6, 10, 4, 4, 12, 11, 27, 24, 13, 19, 18, 34, 31, 49, 24, 28, 47, 46, 22, 19, 21, 23, 48, 18, 18, 44, 20, 39, 57, 47, 40, 38, 43, 46
OFFSET
1,3
COMMENTS
Once A229037(n) has been computed, we have the following constraints:
- for k = 1..n-1, A229037(n + k) <> 2*A229037(n) - A229037(n - k),
- if 2*A229037(n) - A229037(n - k) <= 0, then we ignore this constraint,
- if 2*A229037(n) - A229037(n - k) = 2*A229037(n') - A229037(n' - k')
for some n' < n and k' < n' such that n + k = n' + k',
then we also ignore this constraint.
FORMULA
a(n) < n.
EXAMPLE
The first terms, alongside the corresponding value of A229037 (denoted by f(n)) and the new constraints, are:
n a(n) f(n) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
- ---- ---- - - - - - - - - - -- -- -- -- -- -- -- -- -- --
1 0 1 . . . . . . . . . . . . . . . . . . .
2 1 1 . . 1 . . . . . . . . . . . . . . . .
3 2 2 . . . 3 3 . . . . . . . . . . . . . .
4 2 1 . . . . . 1 1 . . . . . . . . . . . .
5 2 1 . . . . . . . 1 1 . . . . . . . . . .
6 5 2 . . . . . . 3 3 2 3 3 . . . . . . . .
7 5 2 . . . . . . . 2 3 . 2 3 3 . . . . . .
8 7 4 . . . . . . . . 6 6 7 7 6 7 7 . . . .
9 7 4 . . . . . . . . . 4 6 6 7 . 6 7 7 . .
PROG
(PARI) See Links section.
CROSSREFS
Sequence in context: A324925 A163946 A240500 * A308512 A308857 A244480
KEYWORD
nonn
AUTHOR
Rémy Sigrist, May 13 2021
STATUS
approved