The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A343386 Number of odd Motzkin n-paths, i.e., Motzkin n-paths with an odd number of up steps. 3
 0, 0, 1, 3, 6, 10, 20, 56, 168, 456, 1137, 2827, 7458, 20670, 57577, 157691, 427976, 1170552, 3248411, 9096497, 25505562, 71436182, 200338074, 564083786, 1595055520, 4522769520, 12842772295, 36514010301, 103995490758, 296794937626, 848620165860, 2430089817720 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS a(n) is the number of Motzkin n-paths with an odd number of U-steps (see A001006). For example, there are 9 Motzkin 4-paths, of which six have one U-step each, namely: 00UD, 0U0D, 0UD0, U00D, U0D0, and UD00. So a(4) = 6. Number of Motzkin n-paths that, after removing the horizontal steps, are converted to Dyck (2m)-paths, where 2m <= n and m is odd (see A024492). LINKS Gennady Eremin, Table of n, a(n) for n = 0..800 Gennady Eremin, Walking in the OEIS: From Motzkin numbers to Fibonacci numbers. The "shadows" of Motzkin numbers, arXiv:2108.10676 [math.CO], 2021. FORMULA a(n) = Sum_{k=0..n} binomial(n, 4*k+2) * A000108(2*k+1). a(n) = A001006(n) - A107587(n). G.f.: A(x) = (2 - 2*x - sqrt(1-2*x-3*x^2) - sqrt(1-2*x+5*x^2))/(4*x^2). G.f. A(x) satisfies A(x) = x*A(x) + x^2*A(x)^2 + x^2*B(x)^2 where B(x) is the g.f. of A107587. a(n) = A107587(n) - A100223(n+2). - R. J. Mathar, Apr 16 2021 D-finite with recurrence: n*(n+2)*a(n) + (-5*n^2-n+3)*a(n-1) + (10*n^2-16*n+3)*a(n-2) + (-10*n^2+34*n-27)*a(n-3) - (11*n-5)*(n-3)*a(n-4)  + 15*(n-3)*(n-4)*a(n-5) = 0, n >= 5. - R. J. Mathar, Apr 17 2021 D-finite with recurrence: n*(n-2)*(n+2)*a(n) - (2*n-1)*(2*n^2-2*n-3)*a(n-1) + 3*(n-1)*(2*n^2-4*n+1)*a(n-2) - 2*(n-1)*(n-2)*(2*n-3)*a(n-3) - 15*(n-1)*(n-2)*(n-3)*a(n-4) = 0, n >= 4. - R. J. Mathar, Apr 17 2021 a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k) * A000108(k) * (k mod 2). - Gennady Eremin, May 03 2021 [after Paul Barry (A107587)] a(n) = ((n-1)*n*hypergeom([1/2-n/4, 3/4-n/4, 1-n/4, 5/4-n/4], [3/2, 3/2, 2], 16))/2. - Peter Luschny, Sep 24 2021 EXAMPLE G.f. = x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 20*x^6 + 56*x^7 + 168*x^8 + ... MATHEMATICA a[n_] := ((n - 1) n HypergeometricPFQ[{1/2 - n/4, 3/4 - n/4, 1 - n/4, 5/4 - n/4}, {3/2, 3/2, 2}, 16])/2; Table[a[n], {n, 0, 31}] (* Peter Luschny, Sep 24 2021 *) PROG (Python) M = [4, 9]; E = [1, 1, 1, 1, 3]; A343386 = [0, 0, 1, 3, 6] for n in range(5, 801):     M.append(((2*n+1)*M[1]+(3*n-3)*M[0])//(n+2))     E.append(((5*n**2+n-3)*E[4] - (10*n**2-16*n+3)*E[3]       + (10*n**2-34*n+27)*E[2] + (11*n-5)*(n-3)*E[1]       - 15*(n-3)*(n-4)*E[0]) // (n*n+2*n))     A343386.append(M[-1] - E[-1])     M.pop(0); E.pop(0) CROSSREFS Cf. A000108, A001006, A107587, A024492, A100223. Sequence in context: A018171 A306357 A122628 * A068865 A060179 A056411 Adjacent sequences:  A343383 A343384 A343385 * A343387 A343388 A343389 KEYWORD nonn,easy AUTHOR Gennady Eremin, Sergey Kirgizov, Apr 13 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 05:44 EST 2021. Contains 349627 sequences. (Running on oeis4.)