OFFSET
0,6
COMMENTS
LINKS
Gennady Eremin, Table of n, a(n) for n = 0..800
Gennady Eremin, Walking in the OEIS: From Motzkin numbers to Fibonacci numbers. The "shadows" of Motzkin numbers, arXiv:2108.10676 [math.CO], 2021.
FORMULA
G.f.: A(x) = (1+x+sqrt(1-2*x+5*x^2))/2.
G.f.: A(x) = x/(series_reversion[x*(1-x)/(1-x-x^2)]).
D-finite with recurrence a(n) = ((2*n-3)*a(n-1) - 5*(n-3)*a(n-2))/n (for n>2), with a(0)=1, a(1)=0, a(2)=1.
Given g.f. A(x), then B(x) = A(x) - 1 + x series reversion is -B(-x). - Michael Somos, Sep 07 2005
Given g.f. A(x) and C(x) = reversion of x + x^2, then B(x) = A(x) - 1 + x satisfies B(x) = x + C(x * B(x)). - Michael Somos, Sep 07 2005
From Paul Barry, Nov 07 2010: (Start)
a(n+1) has Hankel transform (-1)^n*F(n).
a(n+2) has Hankel transform (-1)^comb(n+1,2).
a(n+3) has Hankel transform (-1)^comb(n+1,2)*F(n+2).
Hankel transform of a(n+4) is sum{k=0..n, (-1)^(n-k+1)*(n-k+1)(F(2k+2)-C(1,k)-C(0,k))}. (End)
G.f.: A(x) = x + G(0) = 1 + x^2/G(0) where G(k) = 1 - x + x^2/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 25 2011
Lim sup n->infinity |a(n)|^(1/n) = sqrt(5).
From Gennady Eremin, May 15 2021: (Start)
a(n+2) = A343773(n), n >= 0.
G.f.: A(x) = 1 + x^2*B(x), where B(x) is the g.f. of A343773.
Lim_{n->infinity} a(n)/A001006(n) = 0. (End)
EXAMPLE
G.f. = 1 + x^2 + x^3 - 2*x^5 - 3*x^6 + x^7 + 11*x^8 + 15*x^9 - 13*x^10 - 77*x^11 - 86*x^12 + 144*x^13 + ...
From the table of powers of A(x) (A100224), we see that
2^n-1 = Sum of coefficients [x^0] through [x^n] in A(x)^n:
A^1=[1,0],1,1,0,-2,-3,1,11,...
A^2=[1,0,2],2,1,-2,-5,-2,12,...
A^3=[1,0,3,3],3,0,-5,-6,6,...
A^4=[1,0,4,4,6],4,-2,-8,-3,...
A^5=[1,0,5,5,10,10],5,-5,-10,...
A^6=[1,0,6,6,15,18,17],6,-9,...
A^7=[1,0,7,7,21,28,35,28],7,...
A^8=[1,0,8,8,28,40,60,64,46],...
the main diagonal of which is A001610 = [0,2,3,6,10,17,...],
where Sum_{n>=1} A001610(n-1)/n*x^n = log((1-x)/(1-x-x^2)).
MATHEMATICA
CoefficientList[Series[(1+x+Sqrt[1-2*x+5*x^2])/2, {x, 0, 30}], x] (* Vaclav Kotesovec, Feb 11 2015 *)
PROG
(PARI) {a(n) = if( n<=0, n==0, (2^n - 1 - sum( k=0, n, polcoeff( sum( j=0, min(k, n-1), a(j) * x^j)^n + x * O(x^k), k))) / n)}
(PARI) {a(n) = if( n<=0, n==0, if( n==1, 0, if( n==2, 1, ((2*n-3) * a(n-1) - 5 * (n-3) * a(n-2)) / n)))}
(PARI) {a(n) = if( n<0, 0, polcoeff((1 + x + sqrt(1 - 2*x + 5*x^2 + x * O(x^n))) / 2, n))}
(Python)
A100223 = [1, 0, 1]
for n in range(3, 801):
- 5*(n-3)*A100223[-2])//n ) # Gennady Eremin, Apr 24 2021
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Nov 28 2004
EXTENSIONS
Entry revised by Paul D. Hanna, Mar 19 2013
STATUS
approved