login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174017
A (1,1) Somos-4 sequence.
3
1, 2, -3, 1, 11, -16, -35, -129, 299, -386, -3977, 8063, 42489, 269344, -1000009, 3727745, 47166649, -123526014, -1764203419, -18228952703, 113727892147, -1065812586544, -18344075481339, 52130069331199, 2470319425874195
OFFSET
0,2
COMMENTS
Hankel transform of A174013.
LINKS
FORMULA
a(n) = (a(n-1)*a(n-3) + a(n-2)^2)/a(n-4), n>3.
MATHEMATICA
RecurrenceTable[{a[n] == (a[n-1]*a[n-3] +a[n-2]^2)/a[n-4], a[0] == 1, a[1] == 2, a[2] == -3, a[3] == 1}, a, {n, 0, 150}] (* G. C. Greubel, Sep 18 2018 *)
nxt[{a_, b_, c_, d_}]:={b, c, d, (b*d+c^2)/a}; NestList[nxt, {1, 2, -3, 1}, 30][[All, 1]] (* Harvey P. Dale, Jun 21 2022 *)
PROG
(PARI) m=30; v=concat([1, 2, -3, 1], vector(m-4)); for(n=5, m, v[n] = ( v[n-1]*v[n-3] +v[n-2]^2)/v[n-4]); v \\ G. C. Greubel, Sep 18 2018
(Magma) I:=[1, 2, -3, 1]; [n le 4 select I[n] else (Self(n-1)*Self(n-3) + Self(n-2)^2)/Self(n-4): n in [1..30]]; // G. C. Greubel, Sep 18 2018
CROSSREFS
Sequence in context: A007440 A343773 A100223 * A178081 A368272 A129969
KEYWORD
easy,sign
AUTHOR
Paul Barry, Mar 05 2010
STATUS
approved