login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174013
Sequence whose Hankel transform is a (1,1) Somos-4 sequence.
2
1, 1, 3, 6, 12, 22, 37, 56, 73, 75, 44, -21, -39, 297, 1751, 5749, 14104, 27136, 38163, 22135, -80421, -369611, -934754, -1637758, -1559395, 2019629, 14766699, 44732254, 94865112, 138114302, 61077521
OFFSET
0,3
COMMENTS
Continued fraction form of g.f. A(x) given by A(x)=1/(1-x(1+x)/(1-x/(1+x*A(x))).
Hankel transform is A174017. Diagonal sums of the Deleham array
[1,1,-1,1,1,-1,1,...] Delta [1,0,0,1,0,0,1,0,0,1,0,...], or A174014.
FORMULA
G.f.: (1-3x-x^2-sqrt(1-2x-x^2+6x^3+5x^4))/(2x(1-x-x^2));
G.f.: 1/(1-x(1+x)/(1-x/(1+x/(1-x(1+x)/(1-x/(1+x/(1-... continued fraction).
Conjecture: (n+1)*a(n) +n*a(n-1) +12*(-n+1)*a(n-2) +3*(3*n-8)*a(n-3) +6*(6*n-23)*a(n-4) +11*(-n+2)*a(n-5) +(-49*n+253)*a(n-6) +20*(-n+6)*a(n-7)=0. - R. J. Mathar, Jan 12 2013
EXAMPLE
G.f. = 1 + x + 3*x^2 + 6*x^3 + 12*x^4 + 22*x^5 + 37*x^6 + ... - Michael Somos, Jul 11 2024
MATHEMATICA
a[ n_] := SeriesCoefficient[2*(1-x)/(1-3*x-x^2 + Sqrt[1-2*x-x^2+6*x^3+5*x^4]), {x, 0, n}]; (* Michael Somos, Jul 11 2024 *)
PROG
(PARI) {a(n) = polcoeff(2*(1-x)/(1-3*x-x^2 + sqrt(1-2*x-x^2+6*x^3+5*x^4 + x*O(x^n))), n)}; /* Michael Somos, Jul 11 2024 */
CROSSREFS
Sequence in context: A333820 A139422 A062483 * A309266 A081056 A242448
KEYWORD
easy,sign
AUTHOR
Paul Barry, Mar 05 2010
STATUS
approved