login
A174010
Primes p of the form p = A000040(k) - A163300(k) for some k (includes duplicates).
0
2, 3, 3, 5, 13, 17, 29, 31, 31, 37, 41, 47, 53, 67, 71, 71, 79, 79, 83, 89, 97, 97, 107, 107, 127, 131, 151, 181, 197, 211, 229, 241, 257, 257, 269, 271, 281, 283, 283, 311, 353, 373, 389, 401, 409, 409, 419, 419, 431, 449, 463, 479, 491, 499, 547, 563, 577, 577
OFFSET
1,1
COMMENTS
Primes of form k-th prime minus k-th even nonnegative nonprime.
Essentially the same as A144419.
EXAMPLE
a(1)=2 because 2-0=2; a(2)=3 because 17-14=3; a(3)=3 because 19-16=3; a(4)=5 because 23-18=5; a(5)=13 because 37-24=13.
MAPLE
A163300 := proc(n) if n <= 2 then op(n, [0, 4]) ; else for a from procname(n-1)+2 by 2 do if not isprime(a) then return a; end if; end do; end if; end proc:
for n from 1 to 400 do p := ithprime(n) -A163300(n) ; if isprime(p) then printf("%d, ", p) ; end if; end do: # R. J. Mathar, May 02 2010
CROSSREFS
KEYWORD
nonn,less
AUTHOR
EXTENSIONS
Corrected (83 inserted) by R. J. Mathar, May 02 2010
STATUS
approved