login
A363786
a(0) = 2. For n >= 1, a(n) is the least prime p such that a(n-1) + p has n prime factors counted with multiplicity.
0
2, 3, 3, 5, 11, 37, 59, 229, 347, 421, 3163, 4517, 1627, 26021, 14939, 34213, 64091, 378277, 14939, 3392933, 146011, 6931877, 8796763, 37340581, 25573979, 238667173, 113654363, 1018807717, 491141723, 4743349669, 8544205403, 10246276517, 491141723
OFFSET
0,1
FORMULA
A001222(a(n-1) + a(n)) = n.
EXAMPLE
a(5) = 37 because a(4) + 37 = 48 = 2^4*3 has 5 prime factors counted with multiplicity.
MAPLE
R:= 2: t:= 2:
for n from 1 to 30 do
p:= 1:
do p:= nextprime(p)
until numtheory:-bigomega(t+p) = n;
R:= R, p;
t:= p;
od:
R;
MATHEMATICA
s={2}; Do[p=2; While[PrimeOmega[s[[-1]]+p]!=
k, p=NextPrime[p]]; Print[p]; AppendTo[s, p], {k, 1, 50}];
CROSSREFS
Sequence in context: A326053 A296083 A294285 * A359033 A064339 A174010
KEYWORD
nonn
AUTHOR
Zak Seidov and Robert Israel, Jun 21 2023
STATUS
approved