login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A340373
a(n) = 1 if n is of the form of 2^i * p^j, with p an odd prime, and i>=0, j>=1, otherwise 0.
5
0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0
OFFSET
1
COMMENTS
a(n) = 1 if the odd part of n has exactly one distinct prime divisor, and 0 otherwise.
FORMULA
a(n) = A069513(A000265(n)).
a(n) = [A005087(n) == 1], where [ ] is the Iverson bracket, and A005087(n) = A001221(A000265(n)).
a(n) = A340363(n) - A209229(n).
a(n) = Sum_{d|n} mu(2*d)*bigomega(d). - Ridouane Oudra, Oct 29 2024
MATHEMATICA
A340373[n_] := Boole[PrimePowerQ[n/2^IntegerExponent[n, 2]]]; Array[A340373, 100] (* Paolo Xausa, Oct 31 2024 *)
PROG
(PARI) A340373(n) = (1==omega(n>>valuation(n, 2)));
CROSSREFS
Characteristic function of A336101.
Sequence in context: A295309 A353670 A252744 * A043545 A094754 A321694
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 06 2021
STATUS
approved