login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340373
a(n) = 1 if n is of the form of 2^i * p^j, with p an odd prime, and i>=0, j>=1, otherwise 0.
5
0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0
OFFSET
1
COMMENTS
a(n) = 1 if the odd part of n has exactly one distinct prime divisor, and 0 otherwise.
FORMULA
a(n) = A069513(A000265(n)).
a(n) = [A005087(n) == 1], where [ ] is the Iverson bracket, and A005087(n) = A001221(A000265(n)).
a(n) = A340363(n) - A209229(n).
a(n) = Sum_{d|n} mu(2*d)*bigomega(d). - Ridouane Oudra, Oct 29 2024
MATHEMATICA
A340373[n_] := Boole[PrimePowerQ[n/2^IntegerExponent[n, 2]]]; Array[A340373, 100] (* Paolo Xausa, Oct 31 2024 *)
PROG
(PARI) A340373(n) = (1==omega(n>>valuation(n, 2)));
CROSSREFS
Characteristic function of A336101.
Sequence in context: A295309 A353670 A252744 * A043545 A094754 A321694
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 06 2021
STATUS
approved