The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A094754 Middle coefficient of cyclotomic polynomial Phi_n(x). 3
 0, 0, 1, 0, 1, -1, 1, 0, 1, 1, 1, -1, 1, -1, -1, 0, 1, -1, 1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, 0, -1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, 0, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,385 COMMENTS a(n) = 0 if n is a power of 2, otherwise a(n) is odd. The first term with absolute value > 1 is a(385) = -3. - Michel Marcus, Apr 24 2019 LINKS T. D. Noe, Table of n, a(n) for n=1..10000 Dorin Andrica, Ovidiu Bagdasar, On some results concerning the polygonal polynomials, Carpathian Journal of Mathematics (2019) Vol. 35, No. 1, 1-11. G. P. Dresden, On the middle coefficient of a cyclotomic polynomial, Amer. Math. Monthly, 111 (No. 6, 2004), 531-533. Gregory Dresden, On the Middle Coefficient of a Cyclotomic Polynomial, arXiv:1904.10593 [math.NT], 2019. MAPLE with(numtheory); t1:=[0, 0]; for n from 3 to 120 do t2:=cyclotomic(n, x); t3:=degree(t2, x); t1:=[op(t1), coeff(t2, x, floor(t3/2))]; od: t1; MATHEMATICA Array[If[EvenQ@ Length@ #, 0, #[[Ceiling[Length[#]/2] ]] ] &@ CoefficientList[Cyclotomic[#, x], x] &, 105] (* Michael De Vlieger, Mar 29 2019 *) CROSSREFS Cf. A095877 (n such that the middle coefficient of Phi_n(x) has a value not obtained for smaller n). Sequence in context: A252744 A340373 A043545 * A321694 A262684 A287382 Adjacent sequences:  A094751 A094752 A094753 * A094755 A094756 A094757 KEYWORD sign AUTHOR N. J. A. Sloane, Jun 10 2004 EXTENSIONS Second offset from Michel Marcus, Apr 24 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 13 00:11 EDT 2021. Contains 343829 sequences. (Running on oeis4.)