login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373263
a(n) = 1 if A276085(n) == -1 (mod 3), otherwise 0, where A276085 is the primorial base log-function.
2
0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0
OFFSET
1
FORMULA
a(n) = [A373153(n) = -1], where [ ] is the Iverson bracket.
a(n) = [A007949(n)-A007814(n) == +1 (mod 3)].
a(n) = 1 - (A372573(n)+A373260(n)).
PROG
(PARI) A373263(n) = (1==((valuation(n, 3)-valuation(n, 2))%3));
(PARI)
A002110(n) = prod(i=1, n, prime(i));
A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*A002110(primepi(f[k, 1])-1)); };
A373263(n) = (2==(A276085(n)%3));
CROSSREFS
Characteristic function of A373262.
Sequence in context: A094754 A321694 A262684 * A287382 A074290 A091225
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 30 2024
STATUS
approved