login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340363
a(n) = 1 if n is of the form of 2^i * p^j, with p an odd prime and i, j >= 0, otherwise 0.
5
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0
OFFSET
1
COMMENTS
a(n) = 1 if the odd part of n has no more than one distinct prime divisor, and 0 otherwise.
FORMULA
a(n) = A010055(A000265(n)).
a(n) = [A005087(n) <= 1], where [ ] is the Iverson bracket, and A005087(n) = A001221(A000265(n)).
a(n) = A209229(n) + A340373(n).
For all n, a(n) <= A340372(n).
MATHEMATICA
A340363[n_] := Boole[PrimeNu[n/2^IntegerExponent[n, 2]] < 2];
Array[A340363, 100] (* Paolo Xausa, Oct 31 2024 *)
PROG
(PARI)
A000265(n) = (n>>valuation(n, 2));
A340363(n) = (omega(A000265(n))<=1);
CROSSREFS
Characteristic function of {1} U A070776.
Sequence in context: A133011 A296079 A354806 * A340372 A167850 A167851
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 06 2021
STATUS
approved