login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339692
Primes that can be expressed as p^k+2*k where p is prime and k >= 1.
1
5, 7, 13, 19, 29, 31, 43, 53, 61, 73, 89, 103, 109, 131, 139, 151, 173, 181, 193, 199, 229, 241, 271, 283, 293, 313, 349, 421, 433, 463, 523, 571, 601, 619, 643, 661, 811, 823, 829, 859, 883, 1021, 1033, 1051, 1063, 1093, 1153, 1231, 1279, 1291, 1303, 1321, 1373, 1429, 1453, 1483, 1489, 1609
OFFSET
1,1
COMMENTS
Terms expressible in more than one way include
13 = 11^1 + 2*1 = 3^2 + 2*2
349 = 347^1 + 2*1 = 7^3 + 2*3
78139 = 78137^^1 + 2*1 = 5^7 + 2*7
1092733 = 1092731^1 + 2*1 = 103^3 + 2*3
22665193 = 22665191^1 + 2*1 = 283^3 + 2*3.
LINKS
EXAMPLE
a(5) = 29 is a term because 29 = 5^2 + 2*2. and 5 and 29 are primes.
MAPLE
N:= 1000: # for terms <= N
S:= {}:
for n from 1 while 3^n + 2*n <= N do
p:= 2:
do
p:= nextprime(p);
q:= p^n + 2*n;
if q > N then break fi;
if isprime(q) then S:= S union {q};
fi
od od:
sort(convert(S, list));
MATHEMATICA
Block[{nn = 1610, a = {}}, Do[Do[Which[# > nn, Break[], PrimeQ[#], AppendTo[a, #]] &[(#^k) + 2 k], {k, Infinity}] &[Prime@ i], {i, 2, PrimePi@ nn}]; Union@ a] (* Michael De Vlieger, Dec 13 2020 *)
PROG
(PARI) isok(p) = {if (isprime(p), for(k=1, p\2, if (k==isprimepower(p-2*k), return(1)); ); ); } \\ Michel Marcus, Dec 13 2020
CROSSREFS
Includes A006512, A045637 and A201308.
Sequence in context: A274242 A163427 A215805 * A164567 A191046 A045443
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Dec 13 2020
STATUS
approved