Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Dec 15 2020 18:29:38
%S 5,7,13,19,29,31,43,53,61,73,89,103,109,131,139,151,173,181,193,199,
%T 229,241,271,283,293,313,349,421,433,463,523,571,601,619,643,661,811,
%U 823,829,859,883,1021,1033,1051,1063,1093,1153,1231,1279,1291,1303,1321,1373,1429,1453,1483,1489,1609
%N Primes that can be expressed as p^k+2*k where p is prime and k >= 1.
%C Terms expressible in more than one way include
%C 13 = 11^1 + 2*1 = 3^2 + 2*2
%C 349 = 347^1 + 2*1 = 7^3 + 2*3
%C 78139 = 78137^^1 + 2*1 = 5^7 + 2*7
%C 1092733 = 1092731^1 + 2*1 = 103^3 + 2*3
%C 22665193 = 22665191^1 + 2*1 = 283^3 + 2*3.
%H Robert Israel, <a href="/A339692/b339692.txt">Table of n, a(n) for n = 1..10000</a>
%e a(5) = 29 is a term because 29 = 5^2 + 2*2. and 5 and 29 are primes.
%p N:= 1000: # for terms <= N
%p S:= {}:
%p for n from 1 while 3^n + 2*n <= N do
%p p:= 2:
%p do
%p p:= nextprime(p);
%p q:= p^n + 2*n;
%p if q > N then break fi;
%p if isprime(q) then S:= S union {q};
%p fi
%p od od:
%p sort(convert(S,list));
%t Block[{nn = 1610, a = {}}, Do[Do[Which[# > nn, Break[], PrimeQ[#], AppendTo[a, #]] &[(#^k) + 2 k], {k, Infinity}] &[Prime@ i], {i, 2, PrimePi@ nn}]; Union@ a] (* _Michael De Vlieger_, Dec 13 2020 *)
%o (PARI) isok(p) = {if (isprime(p), for(k=1, p\2, if (k==isprimepower(p-2*k), return(1));););} \\ _Michel Marcus_, Dec 13 2020
%Y Includes A006512, A045637 and A201308.
%K nonn
%O 1,1
%A _J. M. Bergot_ and _Robert Israel_, Dec 13 2020