login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339694
Triangle read by rows: A(n, k) = Sum_{i=0..n-1} x(i, k)*2^i, where x(i, k) = A014682^(i)(k) (mod 2) using the i-th iteration of A014682.
4
0, 1, 0, 1, 2, 3, 0, 5, 2, 3, 4, 1, 6, 7, 0, 5, 10, 3, 4, 1, 6, 7, 8, 13, 2, 11, 12, 9, 14, 15, 0, 21, 10, 3, 20, 17, 6, 23, 8, 29, 2, 11, 12, 9, 14, 15, 16, 5, 26, 19, 4, 1, 22, 7, 24, 13, 18, 27, 28, 25, 30, 31, 0, 21, 42, 35, 20, 17, 6, 23, 40, 29, 34, 11
OFFSET
1,5
COMMENTS
A(n, k) is periodic with period 2^n, i.e., A(n, k) = A(n, k + 2^n). Each row in the triangle is therefore [A(n, 0), A(n, 1), ..., A(n, 2^n-1)].
The binary modular Collatz graph C(n) is the graph representing the dynamics of the Collatz function (A014682) modulo 2^n. For example, in C(3), there is an arrow from 3 to 5 and from 3 to 1 because any number that is 3 modulo 8 either gets mapped to 5 modulo 8 or 1 modulo 8. The vertices of the de Bruijn graph B(2,n) are words of length n consisting of the two symbols 0 and 1. If one represents these vertices as integers, b_0 b_1 ... b_{n-1} -> Sum_{i=0..n-1} b_i*2^i, then A(n) : C(n) -> B(2,n) is a graph isomorphism [Laarhoven, de Weger].
The n-th row is a permutation on the set {0..2^n-1}. For n > 5, the order of this permutation is 2^(n-4) [Bernstein, Lagarias]. - Sebastian Karlsson, Jan 17 2021
LINKS
Sebastian Karlsson, Rows n = 1..13, flattened
D. J. Bernstein and J. C. Lagarias, The 3x+1 conjugacy map, Canadian Journal of Mathematics, Vol. 48, 1996, pp. 1154-1169.
Thijs Laarhoven and Benne de Weger, The Collatz conjecture and De Bruijn graphs, Indagationes Mathematicae. New Series, 24(4) (2013), 971-983. arXiv version, arXiv:1209.3495 [math.NT], 2012.
J. C. Lagarias, The 3x+1 problem and its generalizations, Amer. Math. Monthly, 92 (1985), 3-23.
J. C. Lagarias, The 3x+1 problem and its generalizations, Amer. Math. Monthly, 92 (1985), 3-23.
FORMULA
A000120( T(n, (m + 1) mod 2^n) ) = log_3( A014682^n(m + 1 + 2^n) - A014682^n(m + 1) ), m = 0..2^n-1. (A000120 is the binary weight.) - Thomas Scheuerle, Aug 23 2021
EXAMPLE
Triangle begins:
n=1 : 0 1;
n=2 : 0 1 2 3;
n=3 : 0 5 2 3 4 1 6 7;
n=4 : 0 5 10 3 4 1 6 7 8 13 2 11 12 9 14 15;
...
A(3, 4) = Sum_{i=0..2} x(i, 4)*2^i = 0*2^0 + 0*2^1 + 1*2^2 = 4.
A(4, 1) = Sum_{i=0..3} x(i, 1)*2^i = 1*2^0 + 0*2^1 + 1*2^2 + 0*2^3 = 5.
MATHEMATICA
A339694row[n_]:=Table[Sum[Mod[Nest[If[OddQ[#], (3#+1)/2, #/2]&, k, i], 2]2^i, {i, 0, n-1}], {k, 0, 2^n-1}]; Array[A339694row, 6] (* Paolo Xausa, Aug 08 2023 *)
PROG
(Python)
def A014682(k):
if k % 2 == 0:
return k // 2
else:
return (3*k + 1) // 2
def x(i, k):
while i > 0:
k = A014682(k)
i = i - 1
return k % 2
def A(n, k):
L = [x(i, k) * 2**i for i in range(0, n)]
return sum(L)
(PARI) f(n) = if(n%2, 3*n+1, n)/2 \\ A014682
x(i, n) = my(x=n); for (k=1, i, x = f(x)); x % 2;
A(n, k) = sum(i=0, k-1, x(i, n)*2^i);
row(n) = vector(2^n, i, A(i-1, n));
tabf(nn) = for (n=1, nn, print(row(n))); \\ Michel Marcus, Dec 21 2020
CROSSREFS
Cf. A000004 (column 0), A052992 (column 1), A263053 (column 2).
Sequence in context: A072594 A353051 A272591 * A074722 A370744 A331102
KEYWORD
nonn,tabf
AUTHOR
Sebastian Karlsson, Dec 13 2020
STATUS
approved