login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163427
Primes p such that (p+1)^3/8+(p-1)/2 is also prime.
4
5, 7, 13, 19, 29, 31, 41, 53, 71, 101, 103, 109, 173, 191, 199, 223, 229, 233, 239, 257, 269, 277, 331, 383, 397, 431, 491, 569, 571, 599, 619, 631, 719, 733, 751, 757, 761, 823, 857, 859, 863, 887, 907, 937, 967, 971, 977, 1009, 1019, 1063, 1069, 1123, 1163
OFFSET
1,1
COMMENTS
Primes A000040(k) such that (A006254(k-1))^3+ A005097(k-1) is also prime.
LINKS
FORMULA
(a(n)+1)^3/8+(a(n)-1)/2 = A163426(n).
EXAMPLE
For p=5, (5+1)^3/8+(5-1)/2=27+2=29, prime, which adds p=5 to the sequence.
For p=7, (7+1)^3/8+(7-1)/2=67, prime, which adds p=7 to the sequence.
MATHEMATICA
f[n_]:=((p+1)/2)^3+((p-1)/2); lst={}; Do[p=Prime[n]; If[PrimeQ[f[p]], AppendTo[lst, p]], {n, 6!}]; lst
Select[Prime[Range[100]], PrimeQ[(# + 1)^3 / 8 + (# - 1) / 2]&] (* Vincenzo Librandi, Apr 09 2013 *)
PROG
(Magma) [p: p in PrimesInInterval(3, 1200) | IsPrime((p+1)^3 div 8+(p-1) div 2)]; // Vincenzo Librandi, Apr 09 2013
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Edited by R. J. Mathar, Aug 24 2009
STATUS
approved