login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p such that (p+1)^3/8+(p-1)/2 is also prime.
4

%I #12 Sep 08 2022 08:45:46

%S 5,7,13,19,29,31,41,53,71,101,103,109,173,191,199,223,229,233,239,257,

%T 269,277,331,383,397,431,491,569,571,599,619,631,719,733,751,757,761,

%U 823,857,859,863,887,907,937,967,971,977,1009,1019,1063,1069,1123,1163

%N Primes p such that (p+1)^3/8+(p-1)/2 is also prime.

%C Primes A000040(k) such that (A006254(k-1))^3+ A005097(k-1) is also prime.

%H Vincenzo Librandi, <a href="/A163427/b163427.txt">Table of n, a(n) for n = 1..1000</a>

%F (a(n)+1)^3/8+(a(n)-1)/2 = A163426(n).

%e For p=5, (5+1)^3/8+(5-1)/2=27+2=29, prime, which adds p=5 to the sequence.

%e For p=7, (7+1)^3/8+(7-1)/2=67, prime, which adds p=7 to the sequence.

%t f[n_]:=((p+1)/2)^3+((p-1)/2); lst={};Do[p=Prime[n];If[PrimeQ[f[p]],AppendTo[lst, p]],{n,6!}];lst

%t Select[Prime[Range[100]], PrimeQ[(# + 1)^3 / 8 + (# - 1) / 2]&] (* _Vincenzo Librandi_, Apr 09 2013 *)

%o (Magma) [p: p in PrimesInInterval(3, 1200) | IsPrime((p+1)^3 div 8+(p-1) div 2)]; // _Vincenzo Librandi_, Apr 09 2013

%Y Cf. A162652, A163418, A163419, A163420, A163421, A163422, A163424, A163425, A163426.

%K nonn,easy

%O 1,1

%A _Vladimir Joseph Stephan Orlovsky_, Jul 27 2009

%E Edited by _R. J. Mathar_, Aug 24 2009