login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A163424 Primes of the form (p-1)^3/8 + (p+1)^2/4 where p is prime. 8
5, 17, 43, 593, 829, 2969, 3631, 12743, 27961, 44171, 60919, 127601, 278981, 578843, 737281, 950993, 980299, 1455893, 1969001, 2424329, 2763881, 3605293, 5767739, 7801993, 9305521, 11290049, 12220361, 12704093, 16452089, 22987529, 35720189 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1100

EXAMPLE

(3-1)^3/8 + (3+1)^2/4 = 1 + 4 = 5;

(5-1)^3/8 + (5+1)^2/4 = 8 + 9 = 17;

(7-1)^3/8 + (7+1)^2/4 = 27 + 16 = 43.

MATHEMATICA

f[n_]:=((p-1)/2)^3+((p+1)/2)^2; lst={}; Do[p=Prime[n]; If[PrimeQ[f[p]], AppendTo[lst, f[p]]], {n, 7!}]; lst

Select[(#-1)^3/8+(#+1)^2/4&/@Prime[Range[150]], PrimeQ] (* Harvey P. Dale, Oct 05 2018 *)

PROG

(PARI) list(lim)=my(v=List(), t); forprime(p=3, , t=((p-1)/2)^3 + ((p+1)/2)^2; if(t>lim, break); if(isprime(t), listput(v, t))); Vec(v) \\ Charles R Greathouse IV, Dec 23 2016

CROSSREFS

Subsequence of A100662.

For the corresponding primes p, see A163425.

Cf. A162652, A163418, A163419, A163420, A163421, A163422.

Sequence in context: A146778 A146858 A146183 * A294102 A190969 A099451

Adjacent sequences:  A163421 A163422 A163423 * A163425 A163426 A163427

KEYWORD

nonn,easy

AUTHOR

Vladimir Joseph Stephan Orlovsky, Jul 27 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 04:55 EST 2021. Contains 349418 sequences. (Running on oeis4.)