login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339458
Continued fraction expansion of the smallest constant d such that the numbers floor(2^(n^d)) are distinct primes for all n >= 1.
3
1, 1, 1, 63, 7, 3, 2, 2, 1, 1, 1, 250, 2, 1, 2, 1, 2, 3, 1, 4, 1, 1, 3, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 6, 7, 1, 1, 1, 6, 1, 1, 9, 9, 2, 1, 6, 2, 5, 1, 25, 1, 1, 1, 2, 18, 1, 3, 5, 1, 1, 5, 1, 3, 1, 1, 4, 1, 1, 3, 2, 2, 3, 40, 2, 3, 8, 2, 2, 25, 1, 5, 2, 1, 1, 3, 2, 2, 1, 10, 1, 1, 2, 1, 2, 1, 1, 2, 1, 3, 2, 420, 2, 2, 1
OFFSET
1,4
EXAMPLE
1+1/(1+1/(1+1/(63+1/(7+1/(3+1/(2+1/(2+1/(1+1/(1+1/(1+1/(250] = 22739482/15120055 = 1.503928524069522...
The constant is equal to d=1.503928524069520633527689067897583199190738849581138429002999...
PROG
(PARI) A339458(n=63, prec=200)={
my(curprec=default(realprecision));
default(realprecision, max(prec, curprec));
my(a=List([2]), d=1.0, c=2.0, b, p, ok, smpr(b)=my(p=b); while(!isprime(p), p=nextprime(p+1)); return(p); );
for(j=1, n-1,
b=floor(c^(j^d));
until(ok,
p=smpr(b);
ok = 1;
listput(a, p, j);
if(p!=b,
d=log(log(p)/log(c))/log(j);
for(k=1, j-2,
b=floor(c^(k^d));
if(b!=a[k],
ok=0;
j=k;
break;
);
);
);
);
);
default(realprecision, curprec);
return(contfrac(d));
} \\ François Marques, Dec 08 2020
CROSSREFS
KEYWORD
nonn,cofr
AUTHOR
Bernard Montaron, Dec 06 2020
STATUS
approved