login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339457
Decimal expansion of the smallest positive number d such that numbers of the sequence floor(2^(n^d)) are distinct primes for all n>=1.
3
1, 5, 0, 3, 9, 2, 8, 5, 2, 4, 0, 6, 9, 5, 2, 0, 6, 3, 3, 5, 2, 7, 6, 8, 9, 0, 6, 7, 8, 9, 7, 5, 8, 3, 1, 9, 9, 1, 9, 0, 7, 3, 8, 8, 4, 9, 5, 8, 1, 1, 3, 8, 4, 2, 9, 0, 0, 2, 9, 9, 9, 3, 5, 0, 6, 5, 7, 6, 5, 9, 5, 4, 7, 5, 6, 1, 6, 3, 0, 5, 7, 6, 4, 3, 1, 7, 1, 0, 1, 8, 9, 0, 8, 0, 8, 8, 6, 5, 2, 2, 4, 6, 8, 7, 4, 0, 1, 3, 0
OFFSET
1,2
COMMENTS
Assuming Cramer's conjecture on prime gaps, it can be proved that there exists at least one constant d such that all floor(2^(n^d)) are primes for n>=1 as large as required. The constant giving the smallest growth rate is d=1.503928524069520633527689067897583199190738...
Algorithm to generate the smallest constant d and the associated prime number sequence a(n)=floor(2^(n^d)).
0. n=1, a(1)=2, d=1
1. n=n+1
2. b=floor(2^(n^d))
3. p=smpr(b) (smallest prime >= b)
4. If p=b, then a(n)=p, go to 1.
5. d=log(log(p)/log(2))/log(n)
6. a(n)=p
7. k=1
8. b=floor(2^(k^d))
9. If b<>a(k) and b not prime, then p=smpr(b), n=k, go to 5.
10. If b is prime, then a(k)=b
11. If k<n-1 then k=k+1, go to 8.
12. go to 1.
112 decimal digits of d are sufficient to calculate the first 50 terms of the prime sequence. The prime number given by the term of index n=50 has 109 decimal digits.
LINKS
Bernard Montaron, Exponential prime sequences, arXiv:2011.14653 [math.NT], 2020.
EXAMPLE
1.5039285240695206335276890678975831991907388495811384290029993506576595475616...
PROG
(PARI) A339457(n=63, prec=200) = {
\\ returns the list of the first digits of the constant.
\\ the number of digits increases faster than n
my(curprec=default(realprecision));
default(realprecision, max(prec, curprec));
my(a=List([2]), d=1.0, c=2.0, b, p, ok, smpr(b)=my(p=b); while(!isprime(p), p=nextprime(p+1)); return(p); );
for(j=1, n-1,
b=floor(c^(j^d));
until(ok,
p=smpr(b);
ok = 1;
listput(a, p, j);
if(p!=b,
d=log(log(p)/log(c))/log(j);
for(k=1, j-2,
b=floor(c^(k^d));
if(b!=a[k],
ok=0;
j=k;
break;
);
);
);
);
);
my(p=floor(-log(d-log(log(a[n-2])/log(c))/log(n-2))/log(10)) );
default(realprecision, curprec);
return(digits(floor(d*10^p), 10));
} \\ François Marques, Dec 08 2020
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Bernard Montaron, Dec 06 2020
STATUS
approved