Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Jan 01 2022 09:53:38
%S 1,5,0,3,9,2,8,5,2,4,0,6,9,5,2,0,6,3,3,5,2,7,6,8,9,0,6,7,8,9,7,5,8,3,
%T 1,9,9,1,9,0,7,3,8,8,4,9,5,8,1,1,3,8,4,2,9,0,0,2,9,9,9,3,5,0,6,5,7,6,
%U 5,9,5,4,7,5,6,1,6,3,0,5,7,6,4,3,1,7,1,0,1,8,9,0,8,0,8,8,6,5,2,2,4,6,8,7,4,0,1,3,0
%N Decimal expansion of the smallest positive number d such that numbers of the sequence floor(2^(n^d)) are distinct primes for all n>=1.
%C Assuming Cramer's conjecture on prime gaps, it can be proved that there exists at least one constant d such that all floor(2^(n^d)) are primes for n>=1 as large as required. The constant giving the smallest growth rate is d=1.503928524069520633527689067897583199190738...
%C Algorithm to generate the smallest constant d and the associated prime number sequence a(n)=floor(2^(n^d)).
%C 0. n=1, a(1)=2, d=1
%C 1. n=n+1
%C 2. b=floor(2^(n^d))
%C 3. p=smpr(b) (smallest prime >= b)
%C 4. If p=b, then a(n)=p, go to 1.
%C 5. d=log(log(p)/log(2))/log(n)
%C 6. a(n)=p
%C 7. k=1
%C 8. b=floor(2^(k^d))
%C 9. If b<>a(k) and b not prime, then p=smpr(b), n=k, go to 5.
%C 10. If b is prime, then a(k)=b
%C 11. If k<n-1 then k=k+1, go to 8.
%C 12. go to 1.
%C 112 decimal digits of d are sufficient to calculate the first 50 terms of the prime sequence. The prime number given by the term of index n=50 has 109 decimal digits.
%H Bernard Montaron, <a href="https://arxiv.org/abs/2011.14653">Exponential prime sequences</a>, arXiv:2011.14653 [math.NT], 2020.
%e 1.5039285240695206335276890678975831991907388495811384290029993506576595475616...
%o (PARI) A339457(n=63, prec=200) = {
%o \\ returns the list of the first digits of the constant.
%o \\ the number of digits increases faster than n
%o my(curprec=default(realprecision));
%o default(realprecision, max(prec,curprec));
%o my(a=List([2]), d=1.0, c=2.0, b, p, ok, smpr(b)=my(p=b); while(!isprime(p), p=nextprime(p+1)); return(p); );
%o for(j=1, n-1,
%o b=floor(c^(j^d));
%o until(ok,
%o p=smpr(b);
%o ok = 1;
%o listput(a,p,j);
%o if(p!=b,
%o d=log(log(p)/log(c))/log(j);
%o for(k=1,j-2,
%o b=floor(c^(k^d));
%o if(b!=a[k],
%o ok=0;
%o j=k;
%o break;
%o );
%o );
%o );
%o );
%o );
%o my(p=floor(-log(d-log(log(a[n-2])/log(c))/log(n-2))/log(10)) );
%o default(realprecision, curprec);
%o return(digits(floor(d*10^p),10));
%o } \\ _François Marques_, Dec 08 2020
%Y Cf. A339459, A339458, A338613, A338837, A338850.
%K nonn,cons
%O 1,2
%A _Bernard Montaron_, Dec 06 2020