login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202157
a(n) = smallest k having at least two prime divisors d such that (d + n) | ( k + n).
4
63, 18, 45, 50, 75, 66, 63, 102, 75, 50, 165, 198, 147, 258, 165, 110, 663, 182, 399, 442, 147, 242, 705, 678, 455, 786, 483, 182, 1015, 950, 1023, 988, 363, 506, 637, 1446, 1083, 322, 885, 590, 1155, 1443, 1935, 2118, 627, 770, 3243, 2502, 1407, 2706, 845
OFFSET
1,1
COMMENTS
The sequence of numbers k composite and squarefree, prime p | k ==> p+n | k+n is given by A029591 (least quasi-Carmichael number of order -n).
If k is squarefree, for n = 1, we obtain Lucas-Carmichael numbers: A006972.
In this sequence, the majority of terms are not squarefree: 63, 18, 45, ...
REFERENCES
J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 399, p. 89, Ellipses, Paris 2008.
LINKS
FORMULA
a(n) >= n^2 + 4n + 6. [Charles R Greathouse IV, Dec 13 2011]
EXAMPLE
a(8) = 102 because the prime divisors of 102 are 2, 3 and 17;
(2 + 8) | (102 + 8) = 110 = 10*11;
(3 + 8) | 110 = 11*10.
MAPLE
with(numtheory):for n from 1 to 52 do:i:=0:for k from 1 to 5000 while(i=0) do:x:=factorset(k):n1:=nops(x):y:=k+n: j:=0:for m from 1 to n1 do:if n1>=2 and irem(y, x[m]+n)=0 then j:=j+1:else fi:od:if j>=2 then i:=1:printf(`%d, `, k):else fi:od:od:
MATHEMATICA
numd[n_, k_] := Module[{p=FactorInteger[k][[;; , 1]], c=0}, Do[If[Divisible[n+k, n+p[[i]]], c++], {i, 1, Length[p]}]; c]; a[n_]:=Module[{k=1}, While[numd[n, k] <= 1, k++]; k]; Array[a, 50] (* Amiram Eldar, Sep 09 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Dec 13 2011
STATUS
approved