login
A202156
y-values in the solution to x^2 - 13*y^2 = -1.
3
5, 6485, 8417525, 10925940965, 14181862955045, 18408047189707445, 23893631070377308565, 31013914721302556809925, 40256037414619648361974085, 52252305550261582271285552405, 67823452348202119168480285047605, 88034788895660800419105138706238885
OFFSET
1,1
COMMENTS
The corresponding values of x of this Pell equation are in A202155.
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers: The Queen of Mathematics Entertains, Dover Publications (New York), 1966, p. 264.
LINKS
A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929. See Vol. 1, page xxxv.
Tanya Khovanova, Recursive Sequences.
A. M. S. Ramasamy, Polynomial solutions for the Pell's equation, Indian Journal of Pure and Applied Mathematics 25 (1994), p. 579 (Theorem 4, case t=1).
FORMULA
G.f.: 5*x*(1-x)/(1-1298*x+x^2).
a(n) = a(-n+1) = 5*(r^(2n-1)+1/r^(2n-1))/(r+1/r), where r=18+5*sqrt(13).
a(n) = A006191(6*n - 3). - Michael Somos, Feb 24 2023
MATHEMATICA
LinearRecurrence[{1298, -1}, {5, 6485}, 12]
PROG
(Magma) m:=13; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(5*x*(1-x)/(1-1298*x+x^2)));
(Maxima) makelist(expand(((18+5*sqrt(13))^(2*n-1)-(18-5*sqrt(13))^(2*n-1))/(2*sqrt(13))), n, 1, 12);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Dec 15 2011
STATUS
approved