login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A202156 y-values in the solution to  x^2 - 13*y^2 = -1. 3
5, 6485, 8417525, 10925940965, 14181862955045, 18408047189707445, 23893631070377308565, 31013914721302556809925, 40256037414619648361974085, 52252305550261582271285552405, 67823452348202119168480285047605, 88034788895660800419105138706238885 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The corresponding values of x of this Pell equation are in A202155.

REFERENCES

A. H. Beiler, Recreations in the Theory of Numbers: The Queen of Mathematics Entertains, Dover (New York), 1966, p. 264.

LINKS

Bruno Berselli, Table of n, a(n) for n = 1..200

Tanya Khovanova, Recursive Sequences.

A. M. S. Ramasamy, Polynomial solutions for the Pell's equation, Indian Journal of Pure and Applied Mathematics 25 (1994), p. 579 (Theorem 4, case t=1).

J. P. Robertson, Solving the generalized Pell equation x^2-D*y^2=N, pp. 9, 24.

Index entries for linear recurrences with constant coefficients, signature (1298,-1).

FORMULA

G.f.: 5*x*(1-x)/(1-1298*x+x^2).

a(n) = a(-n+1) = 5*(r^(2n-1)+1/r^(2n-1))/(r+1/r), where r=18+5*sqrt(13).

MATHEMATICA

LinearRecurrence[{1298, -1}, {5, 6485}, 12]

PROG

(MAGMA) m:=13; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(5*x*(1-x)/(1-1298*x+x^2)));

(Maxima) makelist(expand(((18+5*sqrt(13))^(2*n-1)-(18-5*sqrt(13))^(2*n-1))/(2*sqrt(13))), n, 1, 12);

CROSSREFS

Cf. A002313, A003654, A031396, A075871, A202155.

Sequence in context: A079812 A137694 A292334 * A117711 A203689 A116140

Adjacent sequences:  A202153 A202154 A202155 * A202157 A202158 A202159

KEYWORD

nonn,easy

AUTHOR

Bruno Berselli, Dec 15 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 17 23:13 EDT 2022. Contains 356204 sequences. (Running on oeis4.)