The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A202156 y-values in the solution to x^2 - 13*y^2 = -1. 3
 5, 6485, 8417525, 10925940965, 14181862955045, 18408047189707445, 23893631070377308565, 31013914721302556809925, 40256037414619648361974085, 52252305550261582271285552405, 67823452348202119168480285047605, 88034788895660800419105138706238885 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The corresponding values of x of this Pell equation are in A202155. REFERENCES A. H. Beiler, Recreations in the Theory of Numbers: The Queen of Mathematics Entertains, Dover Publications (New York), 1966, p. 264. LINKS Bruno Berselli, Table of n, a(n) for n = 1..200 A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929. See Vol. 1, page xxxv. Tanya Khovanova, Recursive Sequences. A. M. S. Ramasamy, Polynomial solutions for the Pell's equation, Indian Journal of Pure and Applied Mathematics 25 (1994), p. 579 (Theorem 4, case t=1). J. P. Robertson, Solving the generalized Pell equation x^2-D*y^2=N, pp. 9, 24. Index entries for linear recurrences with constant coefficients, signature (1298,-1). FORMULA G.f.: 5*x*(1-x)/(1-1298*x+x^2). a(n) = a(-n+1) = 5*(r^(2n-1)+1/r^(2n-1))/(r+1/r), where r=18+5*sqrt(13). a(n) = A006191(6*n - 3). - Michael Somos, Feb 24 2023 MATHEMATICA LinearRecurrence[{1298, -1}, {5, 6485}, 12] PROG (Magma) m:=13; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(5*x*(1-x)/(1-1298*x+x^2))); (Maxima) makelist(expand(((18+5*sqrt(13))^(2*n-1)-(18-5*sqrt(13))^(2*n-1))/(2*sqrt(13))), n, 1, 12); CROSSREFS Cf. A002313, A003654, A006191, A031396, A075871, A202155. Sequence in context: A079812 A137694 A292334 * A117711 A203689 A116140 Adjacent sequences: A202153 A202154 A202155 * A202157 A202158 A202159 KEYWORD nonn,easy AUTHOR Bruno Berselli, Dec 15 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 21 14:18 EDT 2024. Contains 372738 sequences. (Running on oeis4.)