The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A202155 x-values in the solution to x^2 - 13*y^2 = -1. 3
 18, 23382, 30349818, 39394040382, 51133434066018, 66371158023650982, 86149711981264908618, 111822259780523827735182, 145145207045407947135357618, 188398366922679734857866452982, 244540935120431250437563520613018, 317413945387952840388222591889244382 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The corresponding values of y of this Pell equation are in A202156. REFERENCES A. H. Beiler, Recreations in the Theory of Numbers: The Queen of Mathematics Entertains, Dover (New York), 1966, p. 264. LINKS Bruno Berselli, Table of n, a(n) for n = 1..200 Tanya Khovanova, Recursive Sequences. A. M. S. Ramasamy, Polynomial solutions for the Pell's equation, Indian Journal of Pure and Applied Mathematics 25 (1994), p. 579 (Theorem 4, case t=1). J. P. Robertson, Solving the generalized Pell equation x^2-D*y^2=N, pp. 9, 24. Index entries for linear recurrences with constant coefficients, signature (1298,-1). FORMULA G.f.: 18*x*(1+x)/(1-1298*x+x^2). a(n) = -a(-n+1) = (r^(2n-1)-1/r^(2n-1))/2, where r=18+5*sqrt(13). MATHEMATICA LinearRecurrence[{1298, -1}, {18, 23382}, 12] PROG (Magma) m:=13; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(18*x*(1+x)/(1-1298*x+x^2))); (Maxima) makelist(expand(((18+5*sqrt(13))^(2*n-1)+(18-5*sqrt(13))^(2*n-1))/2), n, 1, 12); CROSSREFS Cf. A002313, A003654, A031396, A114047, A202156. Sequence in context: A153301 A129042 A262359 * A296653 A255406 A123401 Adjacent sequences: A202152 A202153 A202154 * A202156 A202157 A202158 KEYWORD nonn,easy AUTHOR Bruno Berselli, Dec 15 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 14:44 EST 2023. Contains 367609 sequences. (Running on oeis4.)