login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A202155 x-values in the solution to  x^2 - 13*y^2 = -1. 3
18, 23382, 30349818, 39394040382, 51133434066018, 66371158023650982, 86149711981264908618, 111822259780523827735182, 145145207045407947135357618, 188398366922679734857866452982, 244540935120431250437563520613018, 317413945387952840388222591889244382 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The corresponding values of y of this Pell equation are in A202156.

REFERENCES

A. H. Beiler, Recreations in the Theory of Numbers: The Queen of Mathematics Entertains, Dover (New York), 1966, p. 264.

LINKS

Bruno Berselli, Table of n, a(n) for n = 1..200

Tanya Khovanova, Recursive Sequences.

A. M. S. Ramasamy, Polynomial solutions for the Pell's equation, Indian Journal of Pure and Applied Mathematics 25 (1994), p. 579 (Theorem 4, case t=1).

J. P. Robertson, Solving the generalized Pell equation x^2-D*y^2=N, pp. 9, 24.

Index entries for linear recurrences with constant coefficients, signature (1298,-1).

FORMULA

G.f.: 18*x*(1+x)/(1-1298*x+x^2).

a(n) = -a(-n+1) = (r^(2n-1)-1/r^(2n-1))/2, where r=18+5*sqrt(13).

MATHEMATICA

LinearRecurrence[{1298, -1}, {18, 23382}, 12]

PROG

(MAGMA) m:=13; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(18*x*(1+x)/(1-1298*x+x^2)));

(Maxima) makelist(expand(((18+5*sqrt(13))^(2*n-1)+(18-5*sqrt(13))^(2*n-1))/2), n, 1, 12);

CROSSREFS

Cf. A002313, A003654, A031396, A114047, A202156.

Sequence in context: A153301 A129042 A262359 * A296653 A255406 A123401

Adjacent sequences:  A202152 A202153 A202154 * A202156 A202157 A202158

KEYWORD

nonn,easy

AUTHOR

Bruno Berselli, Dec 15 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 8 14:39 EDT 2022. Contains 356009 sequences. (Running on oeis4.)