OFFSET
1,1
COMMENTS
Sqrt(phi) / (1 - phi/e) is somewhat close to Pi.
Because phi/e < 1 we have sqrt(phi) / (1 - phi/e) = sqrt(phi) * Sum_{n=0..Infinity}( phi/e) ^n. We obtain a better approximation of Pi with 14 terms: sqrt(phi) * Sum_{n=0..14} ( phi/e) ^n = 3.14135146821891366128707....
EXAMPLE
3.14266274735970351791829....
MATHEMATICA
RealDigits[N[Sqrt[GoldenRatio]/(1-GoldenRatio/E), 105]]
PROG
(PARI) phi=(1+sqrt(5))/2; sqrt(phi)/(1-phi/exp(1)) \\ Charles R Greathouse IV, Dec 28 2011
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Michel Lagneau, Dec 13 2011
STATUS
approved