login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255406
Expansion of the hyperbolic arc lemniscate tangent function.
1
1, 18, 26460, 288149400, 11799717930000, 1303467640855380000, 318564884489773161240000, 150951970515479012453574000000, 126206413988876537942059614180000000, 173464405707011357574463836709701000000000, 370958141678992170468287850863450040726000000000
OFFSET
0,2
COMMENTS
Gauss's hyperbolic arc lemniscate sine function arcslh(x) is defined by arcslh(x) = Integral_{t = 0..x} 1/sqrt(1 + t^4) dt, for x real. Neuman (2007) introduced the hyperbolic arc lemniscate tangent function arctlh(x), defined by arctlh(x) = arcslh( x/(1 - x^4)^(1/4) ) for |x| < 1.
LINKS
Chao-Ping Chen, Wilker and Huygens type inequalities for the lemniscate functions , J. Math. Inequalities Vol. 6, Number 4 (2012), 673-684.
E. Neuman, On Gauss lemniscate functions and lemniscatic mean, Mathematica Pannonica, 18 (2007), no. 1, 77-94.
FORMULA
a(n) = (n - 1/4)! *(4*n)!/( (-1/4)! * n! ).
a(n) = Product_{k = 1..4*n} k - 0^(k mod 4), where we make the usual convention that 0^0 = 1. Cf. A001818 ( Product_{k = 1..2*n} k - 0^(k mod 2) ) and A158111 ( Product {k = 1..3*n} k - 0^(k mod 3) ).
G.f.: arctlh(x) = x + 18*x^5/5! + 26460*x^9/9! + 288149400*x^13/13! + ....
d/dx( arctlh(x) ) = 1/(1 - x^4)^(3/4) = 1 + 18*x^4/4! + 26460*x^8/8! + 288149400*x^12/12! + ....
a(n) ~ (4*n)! / (n^(1/4) * Gamma(3/4)). - Vaclav Kotesovec, Feb 22 2015
EXAMPLE
1/sqrt(1 + t^4) = 1 - (1/2)*t^4 + (3/8)*t^8 - ....
arcslh(x) = Integral_{t = 0..x} 1/sqrt(1 + t^4) dt = x - (1/10)*x^5 + (1/24)*x^9 - ....
Hence arctlh(x) = x/(1 - x^4)^(1/4) - (1/10)*x^5/(1 - x^4)^(5/4) + (1/24)*x^9/(1 - x^4)^(9/4) - ... = x + 18*x^5/5! + 26460*x^9/9! + ....
MAPLE
a:= n-> mul(k-0^(irem(k, 4)), k=1..4*n): seq(a(n), n=0..11);
MATHEMATICA
nmax=15; Table[(CoefficientList[Series[1/(1-x^4)^(3/4), {x, 0, 4*nmax}], x] * Range[0, 4*nmax]!)[[4*n-3]], {n, 1, nmax}] (* Vaclav Kotesovec, Feb 22 2015*)
Table[Pochhammer[3/4, n]*(4*n)!/n!, {n, 0, 10}] (* Jean-François Alcover, Mar 05 2015 *)
PROG
(PARI) a(n) = prod(k = 1, 4*n, k - 0^(k % 4)); \\ Michel Marcus, Mar 03 2015
CROSSREFS
Sequence in context: A262359 A202155 A296653 * A123401 A201494 A079303
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Feb 22 2015
STATUS
approved