|
|
A255406
|
|
Expansion of the hyperbolic arc lemniscate tangent function.
|
|
1
|
|
|
1, 18, 26460, 288149400, 11799717930000, 1303467640855380000, 318564884489773161240000, 150951970515479012453574000000, 126206413988876537942059614180000000, 173464405707011357574463836709701000000000, 370958141678992170468287850863450040726000000000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Gauss's hyperbolic arc lemniscate sine function arcslh(x) is defined by arcslh(x) = Integral_{t = 0..x} 1/sqrt(1 + t^4) dt, for x real. Neuman (2007) introduced the hyperbolic arc lemniscate tangent function arctlh(x), defined by arctlh(x) = arcslh( x/(1 - x^4)^(1/4) ) for |x| < 1.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (n - 1/4)! *(4*n)!/( (-1/4)! * n! ).
a(n) = Product_{k = 1..4*n} k - 0^(k mod 4), where we make the usual convention that 0^0 = 1. Cf. A001818 ( Product_{k = 1..2*n} k - 0^(k mod 2) ) and A158111 ( Product {k = 1..3*n} k - 0^(k mod 3) ).
G.f.: arctlh(x) = x + 18*x^5/5! + 26460*x^9/9! + 288149400*x^13/13! + ....
d/dx( arctlh(x) ) = 1/(1 - x^4)^(3/4) = 1 + 18*x^4/4! + 26460*x^8/8! + 288149400*x^12/12! + ....
|
|
EXAMPLE
|
1/sqrt(1 + t^4) = 1 - (1/2)*t^4 + (3/8)*t^8 - ....
arcslh(x) = Integral_{t = 0..x} 1/sqrt(1 + t^4) dt = x - (1/10)*x^5 + (1/24)*x^9 - ....
Hence arctlh(x) = x/(1 - x^4)^(1/4) - (1/10)*x^5/(1 - x^4)^(5/4) + (1/24)*x^9/(1 - x^4)^(9/4) - ... = x + 18*x^5/5! + 26460*x^9/9! + ....
|
|
MAPLE
|
a:= n-> mul(k-0^(irem(k, 4)), k=1..4*n): seq(a(n), n=0..11);
|
|
MATHEMATICA
|
nmax=15; Table[(CoefficientList[Series[1/(1-x^4)^(3/4), {x, 0, 4*nmax}], x] * Range[0, 4*nmax]!)[[4*n-3]], {n, 1, nmax}] (* Vaclav Kotesovec, Feb 22 2015*)
|
|
PROG
|
(PARI) a(n) = prod(k = 1, 4*n, k - 0^(k % 4)); \\ Michel Marcus, Mar 03 2015
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|