login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Continued fraction expansion of the smallest constant d such that the numbers floor(2^(n^d)) are distinct primes for all n >= 1.
3

%I #11 Jan 11 2021 23:35:42

%S 1,1,1,63,7,3,2,2,1,1,1,250,2,1,2,1,2,3,1,4,1,1,3,1,1,2,1,1,1,2,1,2,2,

%T 1,1,6,7,1,1,1,6,1,1,9,9,2,1,6,2,5,1,25,1,1,1,2,18,1,3,5,1,1,5,1,3,1,

%U 1,4,1,1,3,2,2,3,40,2,3,8,2,2,25,1,5,2,1,1,3,2,2,1,10,1,1,2,1,2,1,1,2,1,3,2,420,2,2,1

%N Continued fraction expansion of the smallest constant d such that the numbers floor(2^(n^d)) are distinct primes for all n >= 1.

%e 1+1/(1+1/(1+1/(63+1/(7+1/(3+1/(2+1/(2+1/(1+1/(1+1/(1+1/(250] = 22739482/15120055 = 1.503928524069522...

%e The constant is equal to d=1.503928524069520633527689067897583199190738849581138429002999...

%o (PARI) A339458(n=63, prec=200)={

%o my(curprec=default(realprecision));

%o default(realprecision, max(prec,curprec));

%o my(a=List([2]), d=1.0, c=2.0, b, p, ok, smpr(b)=my(p=b); while(!isprime(p), p=nextprime(p+1)); return(p); );

%o for(j=1, n-1,

%o b=floor(c^(j^d));

%o until(ok,

%o p=smpr(b);

%o ok = 1;

%o listput(a,p,j);

%o if(p!=b,

%o d=log(log(p)/log(c))/log(j);

%o for(k=1,j-2,

%o b=floor(c^(k^d));

%o if(b!=a[k],

%o ok=0;

%o j=k;

%o break;

%o );

%o );

%o );

%o );

%o );

%o default(realprecision, curprec);

%o return(contfrac(d));

%o } \\ _François Marques_, Dec 08 2020

%Y Cf. A339459, A339457, A338613, A338837, A338850.

%K nonn,cofr

%O 1,4

%A _Bernard Montaron_, Dec 06 2020