OFFSET
0,6
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..300
Eric Weisstein's World of Mathematics, Triangular Number
FORMULA
EXAMPLE
The 5th triangular number is 15 and 15 = 1 + 1 + 1 + 6 + 6 = 3 + 3 + 3 + 3 + 3, so a(5) = 2.
MAPLE
h:= proc(n) option remember; `if`(n<1, 0,
`if`(issqr(8*n+1), n, h(n-1)))
end:
b:= proc(n, i, k) option remember; `if`(n=0, `if`(k=0, 1, 0),
`if`(i*k<n or k>n, 0, b(n, h(i-1), k)+b(n-i, h(min(n-i, i)), k-1)))
end:
a:= n-> (t-> b(t, h(t), n))(n*(n+1)/2):
seq(a(n), n=0..42); # Alois P. Heinz, Nov 10 2020
MATHEMATICA
h[n_] := h[n] = If[n < 1, 0, If[IntegerQ@Sqrt[8n+1], n, h[n-1]]];
b[n_, i_, k_] := b[n, i, k] = If[n == 0, If[k == 0, 1, 0], If[i k < n || k > n, 0, b[n, h[i-1], k] + b[n-i, h[Min[n-i, i]], k-1]]];
a[n_] := b[#, h[#], n]&[n(n+1)/2];
a /@ Range[0, 42](* Jean-François Alcover, Nov 15 2020, after Alois P. Heinz *)
PROG
(SageMath) # Returns a list of length n, slow.
def GeneralizedEulerTransform(n, a):
R.<x, y> = ZZ[[]]
f = prod((1 - y*x^a(k) + O(x, y)^a(n)) for k in (1..n))
coeffs = f.inverse().coefficients()
coeff = lambda k: coeffs[x^a(k)*y^k] if x^a(k)*y^k in coeffs else 0
return [coeff(k) for k in range(n)]
def A338585List(n): return GeneralizedEulerTransform(n, lambda n: n*(n+1)/2)
print(A338585List(12)) # Peter Luschny, Nov 12 2020
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Ilya Gutkovskiy, Nov 08 2020
STATUS
approved