login
A331900
Number of compositions (ordered partitions) of the n-th triangular number into distinct triangular numbers.
2
1, 1, 1, 1, 7, 1, 3, 13, 3, 55, 201, 159, 865, 1803, 7093, 43431, 14253, 22903, 130851, 120763, 1099693, 4527293, 4976767, 7516897, 14349685, 72866239, 81946383, 167841291, 897853735, 455799253, 946267825, 5054280915, 3941268001, 17066300985, 49111862599
OFFSET
0,5
FORMULA
a(n) = A331843(A000217(n)).
EXAMPLE
a(6) = 3 because we have [21], [15, 6] and [6, 15].
MAPLE
b:= proc(n, i, p) option remember; (t->
`if`(t*(i+2)/3<n, 0, `if`(n=0, p!, b(n, i-1, p)+
`if`(t>n, 0, b(n-t, i-1, p+1)))))((i*(i+1)/2))
end:
a:= n-> b(n*(n+1)/2, n, 0):
seq(a(n), n=0..37); # Alois P. Heinz, Jan 31 2020
MATHEMATICA
b[n_, i_, p_] := b[n, i, p] = With[{t = i(i+1)/2}, If[t(i+2)/3 < n, 0, If[n == 0, p!, b[n, i-1, p] + If[t > n, 0, b[n-t, i-1, p+1]]]]];
a[n_] := b[n(n+1)/2, n, 0];
a /@ Range[0, 37] (* Jean-François Alcover, Nov 17 2020, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 31 2020
EXTENSIONS
More terms from Alois P. Heinz, Jan 31 2020
STATUS
approved