login
A331884
Number of compositions (ordered partitions) of n^2 into distinct squares.
3
1, 1, 1, 1, 1, 3, 1, 7, 1, 31, 123, 151, 121, 897, 7351, 5415, 14881, 48705, 150583, 468973, 1013163, 1432471, 1730023, 50432107, 14925241, 125269841, 74592537, 241763479, 213156871, 895153173, 7716880623, 2681163865, 3190865761, 22501985413, 116279718801
OFFSET
0,6
FORMULA
a(n) = A331844(A000290(n)).
EXAMPLE
a(5) = 3 because we have [25], [16, 9] and [9, 16].
MAPLE
b:= proc(n, i, p) option remember;
`if`(i*(i+1)*(2*i+1)/6<n, 0, `if`(n=0, p!,
`if`(i^2>n, 0, b(n-i^2, i-1, p+1))+b(n, i-1, p)))
end:
a:= n-> b(n^2, n, 0):
seq(a(n), n=0..35); # Alois P. Heinz, Jan 30 2020
MATHEMATICA
b[n_, i_, p_] := b[n, i, p] = If[i(i+1)(2i+1)/6 < n, 0, If[n == 0, p!, If[i^2 > n, 0, b[n - i^2, i - 1, p + 1]] + b[n, i - 1, p]]];
a[n_] := b[n^2, n, 0];
a /@ Range[0, 35] (* Jean-François Alcover, Nov 08 2020, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 30 2020
EXTENSIONS
a(24)-a(34) from Alois P. Heinz, Jan 30 2020
STATUS
approved