login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331884
Number of compositions (ordered partitions) of n^2 into distinct squares.
3
1, 1, 1, 1, 1, 3, 1, 7, 1, 31, 123, 151, 121, 897, 7351, 5415, 14881, 48705, 150583, 468973, 1013163, 1432471, 1730023, 50432107, 14925241, 125269841, 74592537, 241763479, 213156871, 895153173, 7716880623, 2681163865, 3190865761, 22501985413, 116279718801
OFFSET
0,6
FORMULA
a(n) = A331844(A000290(n)).
EXAMPLE
a(5) = 3 because we have [25], [16, 9] and [9, 16].
MAPLE
b:= proc(n, i, p) option remember;
`if`(i*(i+1)*(2*i+1)/6<n, 0, `if`(n=0, p!,
`if`(i^2>n, 0, b(n-i^2, i-1, p+1))+b(n, i-1, p)))
end:
a:= n-> b(n^2, n, 0):
seq(a(n), n=0..35); # Alois P. Heinz, Jan 30 2020
MATHEMATICA
b[n_, i_, p_] := b[n, i, p] = If[i(i+1)(2i+1)/6 < n, 0, If[n == 0, p!, If[i^2 > n, 0, b[n - i^2, i - 1, p + 1]] + b[n, i - 1, p]]];
a[n_] := b[n^2, n, 0];
a /@ Range[0, 35] (* Jean-François Alcover, Nov 08 2020, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 30 2020
EXTENSIONS
a(24)-a(34) from Alois P. Heinz, Jan 30 2020
STATUS
approved