|
|
A331884
|
|
Number of compositions (ordered partitions) of n^2 into distinct squares.
|
|
3
|
|
|
1, 1, 1, 1, 1, 3, 1, 7, 1, 31, 123, 151, 121, 897, 7351, 5415, 14881, 48705, 150583, 468973, 1013163, 1432471, 1730023, 50432107, 14925241, 125269841, 74592537, 241763479, 213156871, 895153173, 7716880623, 2681163865, 3190865761, 22501985413, 116279718801
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,6
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
a(5) = 3 because we have [25], [16, 9] and [9, 16].
|
|
MAPLE
|
b:= proc(n, i, p) option remember;
`if`(i*(i+1)*(2*i+1)/6<n, 0, `if`(n=0, p!,
`if`(i^2>n, 0, b(n-i^2, i-1, p+1))+b(n, i-1, p)))
end:
a:= n-> b(n^2, n, 0):
|
|
MATHEMATICA
|
b[n_, i_, p_] := b[n, i, p] = If[i(i+1)(2i+1)/6 < n, 0, If[n == 0, p!, If[i^2 > n, 0, b[n - i^2, i - 1, p + 1]] + b[n, i - 1, p]]];
a[n_] := b[n^2, n, 0];
|
|
CROSSREFS
|
Cf. A000290, A006456, A030273, A032020, A037444, A105152, A224366, A232173, A280129, A298640, A331844.
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|