login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319435
Number of partitions of n^2 into exactly n nonzero squares.
6
1, 1, 0, 1, 1, 1, 4, 4, 9, 16, 24, 52, 83, 152, 305, 515, 959, 1773, 3105, 5724, 10255, 18056, 32584, 58082, 101719, 179306, 317610, 552730, 962134, 1683435, 2899064, 4995588, 8638919, 14746755, 25196684, 43082429, 72959433, 123554195, 209017908, 351164162
OFFSET
0,7
LINKS
FORMULA
a(n) = A243148(n^2,n).
EXAMPLE
a(0) = 1: the empty partition.
a(1) = 1: 1.
a(2) = 0: there is no partition of 4 into exactly 2 nonzero squares.
a(3) = 1: 441.
a(4) = 1: 4444.
a(5) = 1: 94444.
a(6) = 4: (25)44111, (16)(16)1111, (16)44444, 999441.
a(7) = 4: (25)(16)41111, (25)444444, (16)(16)44441, (16)999411.
a(8) = 9: (49)9111111, (36)(16)441111, (36)4444444, (25)(25)911111, (25)(16)944411, (25)9999111, (16)(16)(16)94111, (16)9999444, 99999991.
MAPLE
h:= proc(n) option remember; `if`(n<1, 0,
`if`(issqr(n), n, h(n-1)))
end:
b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1 or
t<1, 0, b(n, h(i-1), t)+b(n-i, h(min(n-i, i)), t-1)))
end:
a:= n-> (s-> b(s$2, n)-`if`(n=0, 0, b(s$2, n-1)))(n^2):
seq(a(n), n=0..40);
MATHEMATICA
h[n_] := h[n] = If[n < 1, 0, If[Sqrt[n] // IntegerQ, n, h[n - 1]]];
b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[i < 1 || t < 1, 0, b[n, h[i - 1], t] + b[n - i, h[Min[n - i, i]], t - 1]]];
a[n_] := Function[s, b[s, s, n] - If[n == 0, 0, b[s, s, n - 1]]][n^2];
a /@ Range[0, 40] (* Jean-François Alcover, Nov 06 2020, after Alois P. Heinz *)
PROG
(SageMath) # uses[GeneralizedEulerTransform(n, a) from A338585], slow.
def A319435List(n): return GeneralizedEulerTransform(n, lambda n: n^2)
print(A319435List(10)) # Peter Luschny, Nov 12 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 18 2018
STATUS
approved