OFFSET
1,3
COMMENTS
A rooted plane tree is palindromic if the sequence of branches directly under any given node is a palindrome.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..500
Gus Wiseman, The a(8) = 35 palindromic plane trees.
Gus Wiseman, The a(11) = 234 palindromic plane trees.
FORMULA
a(n) ~ c * d^n, where d = 1.86383559155190653688720443906758855085492625375... and c = 0.24457511051198663873739022949952908293770055... - Vaclav Kotesovec, Nov 16 2021
EXAMPLE
The a(7) = 20 palindromic plane trees:
((((((o)))))) (((((oo))))) ((((ooo)))) (((oooo))) ((ooooo)) (oooooo)
((((o)(o)))) (((o(o)o))) ((o(oo)o)) (o(ooo)o)
(((o))((o))) ((o((o))o)) (o((oo))o) (oo(o)oo)
(((o)o(o))) ((oo)(oo))
(o(((o)))o) ((o)oo(o))
((o)(o)(o)) (o(o)(o)o)
MATHEMATICA
panplane[n_]:=If[n==1, {{}}, Join@@Table[Select[Tuples[panplane/@c], #==Reverse[#]&], {c, Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[panplane[n]], {n, 10}]
PROG
(PARI) PAL(p)={(1+p)/subst(1-p, x, x^2)}
seq(n)={my(p=O(1)); for(i=1, n, p=PAL(x*p)); Vec(p)} \\ Andrew Howroyd, Sep 19 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 18 2018
STATUS
approved