login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337970
L.g.f.: -log( Sum_{n=-oo..+oo} (-p)^n * (p*x)^(n^2) ) = Sum_{n>=1} a(n) * x^n/n, where p = sqrt(5).
2
6, 36, 216, 776, 3876, 18576, 83376, 399376, 2034126, 9884376, 49034376, 245689376, 1221921876, 6107609376, 30563759376, 152599609376, 762979296876, 3815571921876, 19073708984376, 95369005859376, 476858422109376, 2384189755859376, 11920935693359376, 59605116212109376, 298023413134765626
OFFSET
1,1
LINKS
FORMULA
L.g.f.: -log( Sum_{n>=0} (-1)^n * A337971(n) * x^(n^2) ) = Sum_{n>=1} a(n) * x^n/n, where A337971(n) = 5^(n*(n-1)/2) + 5^(n*(n+1)/2) for n>0 with A337971(0) = 1.
L.g.f.: -log( Product_{n>=1} (1 - 5^n*x^(2*n)) * (1 - 5^n*x^(2*n-1)) * (1 - 5^(n-1)*x^(2*n-1)) ) = Sum_{n>=1} a(n) * x^n/n, by the Jacobi triple product identity.
L.g.f.: Sum_{n>=1} Sum_{k>=1} ( 5^(k*n)*x^(2*k*n) + (5^n+1)*5^((k-1)*n)*x^((2*k-1)*n) )/n = Sum_{n>=1} a(n) * x^n/n.
a(n) = 6 (mod 10).
EXAMPLE
L.g.f.: L(x) = 6*x + 36*x^2/2 + 216*x^3/3 + 776*x^4/4 + 3876*x^5/5 + 18576*x^6/6 + 83376*x^7/7 + 399376*x^8/8 + 2034126*x^9/9 + 9884376*x^10/10 + 49034376*x^11/11 + 245689376*x^12/12 + 1221921876*x^13/13 + 6107609376*x^14/14 + 30563759376*x^15/15 + 152599609376*x^16/16 + ... + a(n)*x^n/n + ...
where
exp(-L(x)) = 1 - 6*x + 130*x^4 - 15750*x^9 + 9781250*x^16 - 30527343750*x^25 + 476867675781250*x^36 + ... + (-1)^n*A337971(n)*x^(n^2) + ...
PROG
(PARI) /* By Definition: */
{a(n) = n*polcoeff( -log( sum(m=-sqrtint(2*n+1), sqrtint(2*n+1), (-1)^m*5^(m*(m+1)/2)*x^(m^2) +x*O(x^n)) ), n)}
for(n=1, 30, print1(a(n), ", "))
(PARI) /* By the Jacobi Triple Product identity: */
{a(n) = n*polcoeff( -log( prod(m=1, n\2+1, (1 - 5^m*x^(2*m)) * (1 - 5^m*x^(2*m-1)) * (1 - 5^(m-1)*x^(2*m-1)) +x*O(x^n))), n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 04 2020
STATUS
approved