Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Oct 06 2020 19:49:44
%S 6,36,216,776,3876,18576,83376,399376,2034126,9884376,49034376,
%T 245689376,1221921876,6107609376,30563759376,152599609376,
%U 762979296876,3815571921876,19073708984376,95369005859376,476858422109376,2384189755859376,11920935693359376,59605116212109376,298023413134765626
%N L.g.f.: -log( Sum_{n=-oo..+oo} (-p)^n * (p*x)^(n^2) ) = Sum_{n>=1} a(n) * x^n/n, where p = sqrt(5).
%H Paul D. Hanna, <a href="/A337970/b337970.txt">Table of n, a(n) for n = 1..500</a>
%F L.g.f.: -log( Sum_{n>=0} (-1)^n * A337971(n) * x^(n^2) ) = Sum_{n>=1} a(n) * x^n/n, where A337971(n) = 5^(n*(n-1)/2) + 5^(n*(n+1)/2) for n>0 with A337971(0) = 1.
%F L.g.f.: -log( Product_{n>=1} (1 - 5^n*x^(2*n)) * (1 - 5^n*x^(2*n-1)) * (1 - 5^(n-1)*x^(2*n-1)) ) = Sum_{n>=1} a(n) * x^n/n, by the Jacobi triple product identity.
%F L.g.f.: Sum_{n>=1} Sum_{k>=1} ( 5^(k*n)*x^(2*k*n) + (5^n+1)*5^((k-1)*n)*x^((2*k-1)*n) )/n = Sum_{n>=1} a(n) * x^n/n.
%F a(n) = 6 (mod 10).
%e L.g.f.: L(x) = 6*x + 36*x^2/2 + 216*x^3/3 + 776*x^4/4 + 3876*x^5/5 + 18576*x^6/6 + 83376*x^7/7 + 399376*x^8/8 + 2034126*x^9/9 + 9884376*x^10/10 + 49034376*x^11/11 + 245689376*x^12/12 + 1221921876*x^13/13 + 6107609376*x^14/14 + 30563759376*x^15/15 + 152599609376*x^16/16 + ... + a(n)*x^n/n + ...
%e where
%e exp(-L(x)) = 1 - 6*x + 130*x^4 - 15750*x^9 + 9781250*x^16 - 30527343750*x^25 + 476867675781250*x^36 + ... + (-1)^n*A337971(n)*x^(n^2) + ...
%o (PARI) /* By Definition: */
%o {a(n) = n*polcoeff( -log( sum(m=-sqrtint(2*n+1),sqrtint(2*n+1), (-1)^m*5^(m*(m+1)/2)*x^(m^2) +x*O(x^n)) ),n)}
%o for(n=1,30,print1(a(n),", "))
%o (PARI) /* By the Jacobi Triple Product identity: */
%o {a(n) = n*polcoeff( -log( prod(m=1,n\2+1, (1 - 5^m*x^(2*m)) * (1 - 5^m*x^(2*m-1)) * (1 - 5^(m-1)*x^(2*m-1)) +x*O(x^n))),n)}
%o for(n=1,30,print1(a(n),", "))
%Y Cf. A337971, A337948, A337950, A337968.
%K nonn
%O 1,1
%A _Paul D. Hanna_, Oct 04 2020