login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337969
a(n) = 3^(n*(n-1)/2) + 3^(n*(n+1)/2) for n > 0, with a(0) = 1.
2
1, 4, 30, 756, 59778, 14407956, 10474702110, 22887252808164, 150117512089454082, 2954462801186130697764, 174452165321826729904869150, 30903328831843621482099712974036, 16423234171415040778843829721351058818, 26183907127466405538332338669897982729379636
OFFSET
0,2
FORMULA
G.f.: Sum_{n=-oo..+oo} 3^(n*(n+1)/2) * x^(n^2) = Sum_{n>=0} a(n) * x^(n^2).
G.f.: Product_{n>=1} (1 - 3^n*x^(2*n)) * (1 + 3^n*x^(2*n-1)) * (1 + 3^(n-1)*x^(2*n-1)) = Sum_{n>=0} a(n) * x^(n^2), by the Jacobi triple product identity.
EXAMPLE
G.f.: A(x) = 1 + 4*x + 30*x^4 + 756*x^9 + 59778*x^16 + 14407956*x^25 + 10474702110*x^36 + 22887252808164*x^49 + 150117512089454082*x^64 + 2954462801186130697764*x^81 + ... + a(n)*x^(n^2) + ...
which can be generated by the Jacobi Triple Product:
A(x) = (1 - 3*x^2)*(1 + 3*x)*(1 + x) * (1 - 3^2*x^4)*(1 + 3^2*x^3)*(1 + 3*x^3) * (1 - 3^3*x^6)*(1 + 3^3*x^5)*(1 + 3^2*x^5) * (1 - 3^4*x^8)*(1 + 3^4*x^7)*(1 + 3^3*x^7) * ... * (1 - 3^n*x^(2*n))*(1 + 3^n*x^(2*n-1))*(1 + 3^(n-1)*x^(2*n-1)) * ...
PROG
(PARI) {a(n) = if(n==0, 1, 3^(n*(n-1)/2) + 3^(n*(n+1)/2))}
for(n=0, 15, print1(a(n), ", "))
(PARI) /* As Coefficients in a Jacobi Theta Function: */
{a(n) = polcoeff( sum(m=-n, n, 3^(m*(m+1)/2)*x^(m^2) +x*O(x^(n^2))), n^2)}
for(n=0, 15, print1(a(n), ", "))
(PARI) /* By the Jacobi Triple Product identity: */
{a(n) = polcoeff( prod(m=1, n^2\2+1, (1 - 3^m*x^(2*m)) * (1 + 3^m*x^(2*m-1)) * (1 + 3^(m-1)*x^(2*m-1)) +x*O(x^(n^2))), n^2)}
for(n=0, 15, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 04 2020
STATUS
approved