login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337968
L.g.f.: -log( Sum_{n=-oo..+oo} (-p)^n * (p*x)^(n^2) ) = Sum_{n>=1} a(n) * x^n/n, where p = sqrt(3).
3
4, 16, 64, 136, 424, 1216, 2944, 7696, 24868, 66016, 187840, 568864, 1632232, 4868992, 14760064, 43243552, 129586312, 390119248, 1163757376, 3491600176, 10483526656, 31391806528, 94159476352, 282588457024, 847413793324, 2541979556704, 7627065915520, 22877327084608, 68630932189288, 205904938577536
OFFSET
1,1
LINKS
FORMULA
L.g.f.: -log( Sum_{n>=0} (-1)^n * A337969(n) * x^(n^2) ) = Sum_{n>=1} a(n) * x^n/n, where A337969(n) = 3^(n*(n-1)/2) + 3^(n*(n+1)/2) for n>0 with A337949(0) = 1.
L.g.f.: -log( Product_{n>=1} (1 - 3^n*x^(2*n)) * (1 - 3^n*x^(2*n-1)) * (1 - 3^(n-1)*x^(2*n-1)) ) = Sum_{n>=1} a(n) * x^n/n, by the Jacobi triple product identity.
L.g.f.: Sum_{n>=1} Sum_{k>=1} ( 3^(k*n)*x^(2*k*n) + (3^n+1)*3^((k-1)*n)*x^((2*k-1)*n) )/n = Sum_{n>=1} a(n) * x^n/n.
a(n) = 4 (mod 12) for n >= 1.
EXAMPLE
L.g.f.: L(x) = 4*x + 16*x^2/2 + 64*x^3/3 + 136*x^4/4 + 424*x^5/5 + 1216*x^6/6 + 2944*x^7/7 + 7696*x^8/8 + 24868*x^9/9 + 66016*x^10/10 + 187840*x^11/11 + 568864*x^12/12 + 1632232*x^13/13 + 4868992*x^14/14 + 14760064*x^15/15 + 43243552*x^16/16 + ... + a(n)*x^n/n + ...
where
exp(-L(x)) = 1 - 4*x + 30*x^4 - 756*x^9 + 59778*x^16 - 14407956*x^25 + 10474702110*x^36 - 22887252808164*x^49 + ... + (-1)^n*A337969(n)*x^(n^2) + ...
PROG
(PARI) /* By Definition: */
{a(n) = n*polcoeff( -log( sum(m=-sqrtint(2*n+1), sqrtint(2*n+1), (-1)^m*3^(m*(m+1)/2)*x^(m^2) +x*O(x^n)) ), n)}
for(n=1, 30, print1(a(n), ", "))
(PARI) /* By the Jacobi Triple Product identity: */
{a(n) = n*polcoeff( -log( prod(m=1, n\2+1, (1 - 3^m*x^(2*m)) * (1 - 3^m*x^(2*m-1)) * (1 - 3^(m-1)*x^(2*m-1)) +x*O(x^n))), n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 04 2020
STATUS
approved