login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337377
Primorial deflation (denominator) of Doudna-tree.
9
1, 1, 2, 1, 3, 1, 4, 1, 5, 3, 2, 1, 9, 2, 8, 1, 7, 5, 10, 3, 3, 1, 4, 1, 25, 9, 6, 1, 27, 4, 16, 1, 11, 7, 14, 5, 21, 5, 20, 3, 5, 3, 2, 1, 9, 2, 8, 1, 49, 25, 50, 9, 15, 3, 4, 1, 125, 27, 18, 2, 81, 8, 32, 1, 13, 11, 22, 7, 33, 7, 28, 5, 55, 21, 14, 5, 63, 10, 40, 3, 7, 5, 10, 3, 3, 1, 4, 1, 25, 9, 6, 1, 27, 4, 16, 1, 121
OFFSET
0,3
COMMENTS
Like A005940, also this irregular table can be represented as a binary tree:
1
|
...................1...................
2 1
3......../ \........1 4......../ \........1
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
5 3 2 1 9 2 8 1
7 5 10 3 3 1 4 1 25 9 6 1 27 4 16 1
etc.
A194602 gives the positions of nodes that have value 1. They correspond to terms of A005940 that are products of primorials (A025487). The first 2^k nodes contain A000041(k+1) 1's.
a(n) is even if and only if A005940(1+n) occurs in A277569.
FORMULA
a(n) = A319627(A005940(1+n)).
For n >= 1, a(2*n) = A003961(a(n)) * A006519(n+1).
a(2*n+1) = A026741(a(n)).
MATHEMATICA
Array[#2/GCD[#1, #2] & @@ {#, Apply[Times, Map[If[#1 <= 2, 1, NextPrime[#1, -1]]^#2 & @@ # &, FactorInteger[#]]]} &@ Function[p, Times @@ Flatten@ Table[Prime[Count[Flatten[#], 0] + 1]^#[[1, 1]] &@ Take[p, -i], {i, Length[p]}]]@ Partition[Split[Join[IntegerDigits[# - 1, 2], {2}]], 2] &[# + 1] &, 96] (* Michael De Vlieger, Aug 27 2020 *)
PROG
(PARI)
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
A319627(n) = (A064989(n) / gcd(n, A064989(n)));
A337377(n) = A319627(A005940(1+n));
CROSSREFS
Cf. A337376 (numerators).
A003961, A005940, A006519, A026741, A064989, A319627 are used in a formula defining this sequence.
Positions of 1's: A194602.
Cf. also A329886, A346097.
Sequence in context: A290980 A007381 A366877 * A308059 A361026 A319698
KEYWORD
nonn,frac,look
AUTHOR
STATUS
approved