login
A007381
7th-order maximal independent sets in path graph.
(Formerly M0130)
1
1, 2, 1, 3, 1, 4, 1, 5, 2, 6, 4, 7, 7, 8, 11, 9, 16, 11, 22, 15, 29, 22, 37, 33, 46, 49, 57, 71, 72, 100, 94, 137, 127, 183, 176, 240, 247, 312, 347, 406, 484, 533, 667, 709, 907, 956, 1219, 1303, 1625, 1787, 2158, 2454, 2867, 3361, 3823, 4580
OFFSET
1,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. Yanco and A. Bagchi, "K-th order maximal independent sets in path and cycle graphs," J. Graph Theory, submitted, 1994.
LINKS
R. Yanco and A. Bagchi, K-th order maximal independent sets in path and cycle graphs, Unpublished manuscript, 1994. (Annotated scanned copy)
FORMULA
Empirical g.f.: -x*(x^8+x^7+x^5+x^3+2*x+1) / (x^9+x^2-1). - Colin Barker, Mar 29 2014
a(n) = T(2, 9, n + 9) where T(a, b, n) = Sum_{a*x+b*y = n, x >= 0, y >= 0} binomial(x+y, y). - Sean A. Irvine, Jan 02 2018
EXAMPLE
G.f. = x + 2*x^2 + x^3 + 3*x^4 + x^5 + 4*x^6 + 5*x^7 + 2*x^8 + 6*x^9 + ...
CROSSREFS
Sequence in context: A330747 A337785 A290980 * A366877 A337377 A308059
KEYWORD
nonn
EXTENSIONS
a(22) corrected by Colin Barker, Mar 29 2014
More terms from Sean A. Irvine, Jan 02 2018
STATUS
approved