login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007381 7th-order maximal independent sets in path graph.
(Formerly M0130)
1
1, 2, 1, 3, 1, 4, 1, 5, 2, 6, 4, 7, 7, 8, 11, 9, 16, 11, 22, 15, 29, 22, 37, 33, 46, 49, 57, 71, 72, 100, 94, 137, 127, 183, 176, 240, 247, 312, 347, 406, 484, 533, 667, 709, 907, 956, 1219, 1303, 1625, 1787, 2158, 2454, 2867, 3361, 3823, 4580 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

R. Yanco and A. Bagchi, "K-th order maximal independent sets in path and cycle graphs," J. Graph Theory, submitted, 1994.

LINKS

Table of n, a(n) for n=1..56.

R. Yanco, Letter and Email to N. J. A. Sloane, 1994

R. Yanco and A. Bagchi, K-th order maximal independent sets in path and cycle graphs, Unpublished manuscript, 1994. (Annotated scanned copy)

FORMULA

Empirical g.f.: -x*(x^8+x^7+x^5+x^3+2*x+1) / (x^9+x^2-1). - Colin Barker, Mar 29 2014

a(n) = T(2, 9, n + 9) where T(a, b, n) = Sum_{a*x+b*y = n, x >= 0, y >= 0} binomial(x+y, y). - Sean A. Irvine, Jan 02 2018

EXAMPLE

G.f. = x + 2*x^2 + x^3 + 3*x^4 + x^5 + 4*x^6 + 5*x^7 + 2*x^8 + 6*x^9 + ...

CROSSREFS

Sequence in context: A330747 A337785 A290980 * A337377 A308059 A319698

Adjacent sequences:  A007378 A007379 A007380 * A007382 A007383 A007384

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Mira Bernstein

EXTENSIONS

a(22) corrected by Colin Barker, Mar 29 2014

More terms from Sean A. Irvine, Jan 02 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 13 07:19 EDT 2021. Contains 344981 sequences. (Running on oeis4.)