login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336931
Difference between the 2-adic valuation of A003973(n) [= the sum of divisors of the prime shifted n] and the 2-adic valuation of the number of divisors of n.
4
0, 1, 0, 0, 2, 1, 1, 1, 0, 3, 0, 0, 0, 2, 2, 0, 1, 1, 2, 2, 1, 1, 0, 1, 0, 1, 0, 1, 4, 3, 0, 1, 0, 2, 3, 0, 0, 3, 0, 3, 1, 2, 3, 0, 2, 1, 0, 0, 0, 1, 1, 0, 1, 1, 2, 2, 2, 5, 0, 2, 1, 1, 1, 0, 2, 1, 2, 1, 0, 4, 0, 1, 3, 1, 0, 2, 1, 1, 1, 2, 0, 2, 0, 1, 3, 4, 4, 1, 0, 3, 1, 0, 0, 1, 4, 1, 0, 1, 0, 0, 2, 2, 1, 1, 3
OFFSET
1,5
COMMENTS
Note that A295664(n) = A295664(A003961(n)).
FORMULA
Additive with a(p^e) = 0 when e is even, a(p^e) = A007814(1+A003961(p))-1 when e is odd.
a(n) = A336932(n) - A295664(n).
a(n) = a(A007913(n)).
PROG
(PARI)
A007814(n) = valuation(n, 2);
A336931(n) = { my(f=factor(n)); sum(i=1, #f~, (f[i, 2]%2) * (A007814(1+nextprime(1+f[i, 1]))-1)); };
(PARI)
A003973(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); sigma(factorback(f)); };
A007814(n) = valuation(n, 2);
A336931(n) = (A007814(A003973(n)) - A007814(numdiv(n)));
(Python)
from math import prod
from sympy import factorint, nextprime, divisor_count
def A336931(n): return (~(m:=prod(((q:=nextprime(p))**(e+1)-1)//(q-1) for p, e in factorint(n).items()))& m-1).bit_length()-(~(k:=int(divisor_count(n))) & k-1).bit_length() # Chai Wah Wu, Jul 05 2022
CROSSREFS
Cf. A003961, A003973, A007814, A007913, A295664, A336930 (positions of zeros), A336932, A336937.
Sequence in context: A249303 A361167 A319081 * A363953 A182662 A308778
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 17 2020
STATUS
approved