login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308778
Central element(s) in the period of the continued fraction expansion of sqrt(n), or 0 if no such element exists, or -1 if n is a square.
2
-1, -1, 0, 1, -1, 0, 2, 1, 1, -1, 0, 3, 2, 1, 2, 1, -1, 0, 4, 3, 2, 2, 4, 3, 1, -1, 0, 5, 2, 1, 2, 5, 1, 2, 4, 1, -1, 0, 6, 4, 3, 2, 2, 5, 2, 2, 6, 5, 1, -1, 0, 7, 2, 1, 6, 2, 2, 4, 1, 7, 2, 2, 6, 1, -1, 0, 8, 7, 4, 4, 2, 7, 2, 5, 1, 1, 4, 2, 4, 7, 1, -1, 0
OFFSET
0,7
COMMENTS
The continued fraction expansion of sqrt(n) is periodic (where n is no square), and the period splits in two halves which are mirrored around the center. With r = floor(sqrt(n)) the expansion takes one of the forms:
[r; i, j, k, ..., m, m, ..., k, j, i, 2*r] (odd period length) or
[r; i, j, k, ..., m, ..., k, j, i, 2*r] (even period length)
[r; 2*r] (empty symmetric part, for n = r^2 + 1)
This sequence lists the central element(s) m, or 0 for n = r^2 + 1, or -1 for n = r^2.
a(k^2-1) = 1 for k >= 2. - Robert Israel, Nov 04 2019
LINKS
Oskar Perron, Die Lehre von den Kettenbrüchen, B. G. Teubner (1913), section 24, p. 87 ff.
EXAMPLE
CF(sqrt(2906)) = [53;1,9,1,3,1,3,1,1,14,1,5,2,2,5,1,14,1,1,3,1,3,1,9,1,106], odd period, two central elements, a(2906) = 2.
MAPLE
f:= proc(n) local L, m;
if issqr(n) then return -1
elif issqr(n-1) then return 0
fi;
L:= numtheory:-cfrac(sqrt(n), periodic, quotients);
m:= nops(L[2]);
L[2][floor(m/2)]
end proc:
map(f, [$0..100]); # Robert Israel, Nov 04 2019
MATHEMATICA
Array[Which[IntegerQ@ Sqrt@ #, -1, IntegerQ@ Sqrt[# - 1], 0, True, #[[Floor[Length[#]/2]]] &@ Last@ ContinuedFraction@ Sqrt@ #] &, 83, 0] (* Michael De Vlieger, Jul 07 2019 *)
CROSSREFS
KEYWORD
sign,look
AUTHOR
Georg Fischer, Jun 24 2019
STATUS
approved