login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336421
Number of ways to choose a divisor of a divisor, both having distinct prime exponents, of the n-th superprimorial number A006939(n).
10
1, 3, 13, 76, 571, 5309, 59341, 780149
OFFSET
0,2
COMMENTS
A number has distinct prime exponents iff its prime signature is strict.
The n-th superprimorial or Chernoff number is A006939(n) = Product_{i = 1..n} prime(i)^(n - i + 1).
EXAMPLE
The a(2) = 13 ways:
12/1/1 12/2/1 12/3/1 12/4/1 12/12/1
12/2/2 12/3/3 12/4/2 12/12/2
12/4/4 12/12/3
12/12/4
12/12/12
MATHEMATICA
chern[n_]:=Product[Prime[i]^(n-i+1), {i, n}];
strsig[n_]:=UnsameQ@@Last/@FactorInteger[n];
Table[Total[Cases[Divisors[chern[n]], d_?strsig:>Count[Divisors[d], e_?strsig]]], {n, 0, 5}]
CROSSREFS
A000258 shifted once to the left is dominated by this sequence.
A336422 is the generalization to non-superprimorials.
A000110 counts divisors of superprimorials with distinct prime exponents.
A006939 lists superprimorials or Chernoff numbers.
A008302 counts divisors of superprimorials by bigomega.
A022915 counts permutations of prime indices of superprimorials.
A076954 can be used instead of A006939.
A130091 lists numbers with distinct prime exponents.
A181796 counts divisors with distinct prime exponents.
A181818 gives products of superprimorials.
A317829 counts factorizations of superprimorials.
Sequence in context: A059040 A220895 A352308 * A189239 A074530 A159662
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Jul 25 2020
STATUS
approved