login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334572
Let x(n, k) be the exponent of prime(k) in the factorization of n, then a(n) = Max_{k} abs(x(n,k)- x(n-1,k)).
2
1, 1, 2, 2, 1, 1, 3, 3, 2, 1, 2, 2, 1, 1, 4, 4, 2, 2, 2, 2, 1, 1, 3, 3, 2, 3, 3, 2, 1, 1, 5, 5, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 2, 1, 4, 4, 2, 2, 2, 2, 3, 3, 3, 3, 1, 1, 2, 2, 1, 2, 6, 6, 1, 1, 2, 2, 1, 1, 3, 3, 1, 2, 2, 2, 1, 1, 4, 4, 4, 1, 2, 2, 1, 1, 3, 3, 2
OFFSET
2,3
COMMENTS
a(n) = d_infinite(n, n-1) as defined in Kolossváry & Kolossváry link.
LINKS
István B. Kolossváry and István T. Kolossváry, Distance between natural numbers based on their prime signature, Journal of Number Theory, Vol. 234 (2022), pp. 120-139; arXiv preprint, arXiv:2005.02027 [math.NT], 2020-2021.
Wikipedia, Chebyshev distance.
FORMULA
a(n) = max(A051903(n-1), A051903(n)). - Pontus von Brömssen, May 07 2020
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=2..m} a(k) = 2.2883695... (A334574). - Amiram Eldar, Jan 05 2024
EXAMPLE
The "coordinates" of the prime factorization are
0,0,0,0, ... for n=1,
1,0,0,0, ... for n=2,
0,1,0,0, ... for n=3,
2,0,0,0, ... for n=4,
0,0,1,0, ... for n=5,
1,1,0,0, ... for n=6;
so the absolute differences are
1,0,0,0, ... so a(2)=1,
1,1,0,0, ... so a(3)=1,
2,1,0,0, ... so a(4)=2,
2,0,1,0, ... so a(5)=2,
1,1,1,0, ... so a(6)=1.
MAPLE
f:= n-> add(i[2]*x^i[1], i=ifactors(n)[2]):
a:= n-> max(map(abs, {coeffs(f(n)-f(n-1))})):
seq(a(n), n=2..120); # Alois P. Heinz, May 06 2020
MATHEMATICA
Block[{f}, f[n_] := If[n == 1, {0}, Function[g, ReplacePart[Table[0, {PrimePi[g[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, g]]@ FactorInteger@ n]; Array[Function[{a, b, m}, Max@ Abs[Subtract @@ #] &@ Map[PadRight[#, m] &, {a, b}]] @@ {#1, #2, Max@ Map[Length, {#1, #2}]} & @@ {f[# - 1], f@ #} &, 106, 2]] (* Michael De Vlieger, May 06 2020 *)
(* Second program: *)
f[n_] := Sum[{p, e} = pe; e x^p, {pe, FactorInteger[n]}];
a[n_] := CoefficientList[f[n]-f[n-1], x] // Abs // Max;
a /@ Range[2, 90] (* Jean-François Alcover, Nov 16 2020, after Alois P. Heinz *)
Max @@@ Partition[Join[{0}, Table[Max[FactorInteger[n][[;; , 2]]], {n, 2, 100}]], 2, 1] (* Amiram Eldar, Jan 05 2024 *)
PROG
(PARI) a(n) = {my(f=factor(n/(n-1))[, 2]~); vecmax(apply(x->abs(x), f)); }
(PARI) A051903(n)=vecmax(factor(n)[, 2])
a(n)=if(n<4, return(1)); max(A051903(n-1), A051903(n)) \\ Charles R Greathouse IV, Jan 30 2022
CROSSREFS
Cf. A051903, A067255, A124010, A334573 (partial sums), A334574.
Sequence in context: A191781 A155092 A095133 * A126081 A268507 A272351
KEYWORD
nonn
AUTHOR
Michel Marcus, May 06 2020
STATUS
approved