login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191781
Triangle read by rows: T(n,k) is the number of length-n left factors of Dyck paths having length of the first ascent equal to k (1 <= k <= n).
2
1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 3, 2, 1, 1, 6, 6, 4, 2, 1, 1, 10, 10, 7, 4, 2, 1, 1, 20, 20, 14, 8, 4, 2, 1, 1, 35, 35, 25, 15, 8, 4, 2, 1, 1, 70, 70, 50, 30, 16, 8, 4, 2, 1, 1, 126, 126, 91, 56, 31, 16, 8, 4, 2, 1, 1, 252, 252, 182, 112, 62, 32, 16, 8, 4, 2, 1, 1, 462, 462, 336, 210, 119, 63, 32, 16, 8, 4, 2, 1, 1
OFFSET
1,7
COMMENTS
Sum of entries in row n is binomial(n, floor(n/2)) = A001405(n).
T(n,1) = A001405(n-2) (n>=1).
T(n,2) = A001405(n-2) (n>=2).
Sum_{k=1..n} k*T(n,k) = A191782(n).
FORMULA
G.f.: G(t,z) = (1 - z*c + t*z^3*c^2)/((1 - z*c)*(1 - t*z)*(1 - t*z^2)), where c = (1-sqrt(1 - 4*z^2))/(2*z^2).
EXAMPLE
T(5,2)=3 because we have UUDDU, UUDUD, and UUDUU, where U=(1,1) and D=(1,-1).
Triangle starts:
1;
1, 1;
1, 1, 1;
2, 2, 1, 1;
3, 3, 2, 1, 1;
6, 6, 4, 2, 1, 1;
MAPLE
c := ((1-sqrt(1-4*z^2))*1/2)/z^2: G := (1-z*c+t*z^3*c^2)/((1-z*c)*(1-t*z)*(1-t*z^2*c)): Gser := simplify(series(G, z = 0, 17)): for n to 13 do P[n] := sort(coeff(Gser, z, n)) end do: for n to 13 do seq(coeff(P[n], t, k), k = 1 .. n) end do; # yields sequence in triangular form
CROSSREFS
Sequence in context: A027358 A332548 A352685 * A155092 A095133 A334572
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Jun 18 2011
STATUS
approved