login
A334350
Least positive integer m relatively prime to n such that phi(m*n) = phi(m)*phi(n) is a fourth power, where phi is Euler's totient function (A000010).
2
1, 1, 16, 15, 8, 703, 247, 5, 247, 489, 1255, 5, 109, 247, 4, 3, 1, 247, 73, 3, 109, 1255, 13315, 163, 753, 109, 73, 109, 1373, 163, 27331, 1, 625, 1, 81, 109, 57, 73, 1295, 1, 251, 109, 74663, 625, 949, 13315, 1557377, 1, 74663, 753, 16, 81, 175765, 73, 251, 81, 37, 1373, 243895, 1
OFFSET
1,3
COMMENTS
Conjecture: For any positive integers k and m, there is a positive integer n relatively prime to m such that phi(m*n) = phi(m)*phi(n) is a k-th power.
This conjecture implies that a(n) exists for every n = 1,2,3,....
See also A334353 for a similar conjecture involving the sigma function (A000203).
a(n) = 1 if and only if n is in A078164. - Charles R Greathouse IV, Apr 24 2020
LINKS
Zhi-Wei Sun, Conjectures on representations involving primes, in: M. Nathanson (ed.), Combinatorial and Additive Number Theory II, Springer Proc. in Math. & Stat., Vol. 220, Springer, Cham, 2017, pp. 279-310. See also arXiv, arXiv:1211.1588 [math.NT], 2012-2017.
EXAMPLE
a(3) = 16 with gcd(3,16) = 1 and phi(3*16) = phi(3)*phi(16) = 2*8 = 2^4.
a(167) = 370517977 with gcd(167, 370517977) = 1 and phi(167*370517977) = phi(167)*phi(370517977) = 166*370517976 = 61505984016 = 498^4.
MATHEMATICA
QQ[n_]:=QQ[n]=IntegerQ[n^(1/4)];
phi[n_]:=phi[n]=EulerPhi[n];
tab={}; Do[m=0; Label[aa]; m=m+1; If[GCD[m, n]==1&&QQ[phi[m]*phi[n]], tab=Append[tab, m], Goto[aa]], {n, 1, 60}]; tab
PROG
(PARI) a(n) = my(m=1, e=eulerphi(n)); while (!((gcd(n, m) == 1) && ispower(e*eulerphi(m), 4)), m++); m; \\ Michel Marcus, Apr 25 2020
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Apr 24 2020
STATUS
approved